Computing invariant measures for expanding circle maps

被引:31
作者
Keane, M
Murray, R
Young, LS
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
[2] Univ Cambridge, Stat Lab, Cambridge CB2 1SB, England
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1088/0951-7715/11/1/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a sufficiently expanding C(2) circle map. We prove that a certain Markov approximation scheme based on a partition of S(1) into 2(N) equal intervals produces a probability measure whose total variation norm distance from the exact absolutely continuous invariant measure is bounded by CN2(-N); C is a constant depending only on the map f.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 11 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]  
DEMELO W, 1993, ONE DIMENSIONAL DYNA
[3]   Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations [J].
Ding, J ;
Zhou, AH .
PHYSICA D, 1996, 92 (1-2) :61-68
[4]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[5]   ON INVARIANT MEASURES FOR EXPANDING DIFFERENTIABLE MAPPINGS [J].
KRZYZEWSKI, K ;
SZLENK, W .
STUDIA MATHEMATICA, 1969, 33 (01) :83-+
[6]   FINITE APPROXIMATION FOR FROBENIUS-PERRON OPERATOR - SOLUTION TO ULAMS CONJECTURE [J].
LI, TY .
JOURNAL OF APPROXIMATION THEORY, 1976, 17 (02) :177-186
[7]  
MURRAY RDA, 1996, 9622 U CAMBR STAT LA
[8]   INVARIANT-MEASURES EXIST UNDER A SUMMABILITY CONDITION FOR UNIMODAL MAPS [J].
NOWICKI, T ;
VANSTRIEN, S .
INVENTIONES MATHEMATICAE, 1991, 105 (01) :123-136
[9]  
Renyi A., 1957, Acta Mathematica Academiae Scientiarum Hungarica, V8, P477
[10]  
Ulam SM, 1960, Problems in modern mathematics, Vscience