Minimal rational parametrizations of canal surfaces

被引:15
|
作者
Krasauskas, R. [1 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-2600 Vilnius, Lithuania
关键词
canal surfaces; rational parametrization; rolling ball blend;
D O I
10.1007/s00607-006-0204-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well known that canal surfaces defined by a rational spine curve and a rational radius function are rational. The aim of the present paper is to construct a rational parameterization of low degree. The author uses the generalized stereographic projection in order to transform the problem to a parameterization problem for ruled surfaces. Two problems are discussed: parameterization with boundary conditions (design of canal surfaces with two curves on it, as is the case for rolling ball blends) and parameterization without boundary conditions.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 27 条
  • [1] Minimal rational parametrizations of canal surfaces
    R. Krasauskas
    Computing, 2007, 79 : 281 - 290
  • [2] Missing sets in rational parametrizations of surfaces of revolution
    Rafael Sendra, J.
    Villarino, Carlos
    Sevilla, David
    COMPUTER-AIDED DESIGN, 2015, 66 : 55 - 61
  • [3] Rational parametrizations of nonsingular real cubic surfaces
    Bajaj, CL
    Holt, RJ
    Netravali, AN
    ACM TRANSACTIONS ON GRAPHICS, 1998, 17 (01): : 1 - 31
  • [4] Recognizing implicitly given rational canal surfaces
    Vrsek, Jan
    Lavicka, Miroslav
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 367 - 377
  • [5] Parameterizing rational offset canal surfaces via rational contour curves
    Bizzarri, Michal
    Lavicka, Miroslav
    COMPUTER-AIDED DESIGN, 2013, 45 (02) : 342 - 350
  • [6] Almost rotation-minimizing rational parametrization of canal surfaces
    Choi, HI
    Kwon, SH
    Wee, NS
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (09) : 859 - 881
  • [7] Canal surfaces with rational contour curves and blends bypassing the obstacles
    Bizzarri, Michal
    Lavicka, Miroslav
    Vrsek, Jan
    COMPUTER-AIDED DESIGN, 2015, 64 : 55 - 67
  • [8] Bounded domain, bi-quadratic rational parametrizations of Dupin cyclides
    Bez, H. E.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (07) : 1097 - 1111
  • [9] Canal Surfaces with Quaternions
    Aslan, Selahattin
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 31 - 38
  • [10] Canal Surfaces with Quaternions
    Selahattin Aslan
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2016, 26 : 31 - 38