qSVA framework for RNA quality correction in differential expression analysis

被引:62
作者
Jaffe, Andrew E. [1 ,2 ,3 ,4 ]
Tao, Ran [1 ]
Norris, Alexis L. [5 ,6 ]
Kealhofer, Marc [1 ,7 ]
Nellore, Abhinav [3 ,4 ,8 ]
Shin, Joo Heon [1 ]
Kim, Dewey [1 ]
Jia, Yankai [1 ]
Hyde, Thomas M. [1 ,9 ,10 ]
Kleinman, Joel E. [1 ,10 ]
Straub, Richard E. [1 ]
Leek, Jeffrey T. [3 ,4 ]
Weinberger, Daniel R. [1 ,5 ,10 ,11 ]
机构
[1] Lieber Inst Brain Dev, Johns Hopkins Med Campus, Baltimore, MD 21205 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD 21205 USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Ctr Computat Biol, Baltimore, MD 21205 USA
[5] Johns Hopkins Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
[6] Kennedy Krieger Inst, Dept Neurol, Baltimore, MD 21205 USA
[7] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[8] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21205 USA
[9] Johns Hopkins Sch Med, Dept Neurol, Baltimore, MD 21205 USA
[10] Johns Hopkins Sch Med, Dept Psychiat & Behav Sci, Baltimore, MD 21205 USA
[11] Johns Hopkins Sch Med, McKusick Nathans Inst Genet Med, Baltimore, MD 21205 USA
关键词
RNA sequencing; differential expression analysis; statistical modeling; RNA quality; GENE-EXPRESSION; SEQ DATA; IMPACT; SCHIZOPHRENIA; NORMALIZATION; HETEROGENEITY; PACKAGE; SAMPLES; LEVEL;
D O I
10.1073/pnas.1617384114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method-quality surrogate variable analysis (qSVA)-as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3x) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.
引用
收藏
页码:7130 / 7135
页数:6
相关论文
共 27 条
  • [1] Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Adiconis, Xian
    Borges-Rivera, Diego
    Satija, Rahul
    DeLuca, David S.
    Busby, Michele A.
    Berlin, Aaron M.
    Sivachenko, Andrey
    Thompson, Dawn Anne
    Wysoker, Alec
    Fennell, Timothy
    Gnirke, Andreas
    Pochet, Nathalie
    Regev, Aviv
    Levin, Joshua Z.
    [J]. NATURE METHODS, 2013, 10 (07) : 623 - +
  • [2] The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    Ardlie, Kristin G.
    DeLuca, David S.
    Segre, Ayellet V.
    Sullivan, Timothy J.
    Young, Taylor R.
    Gelfand, Ellen T.
    Trowbridge, Casandra A.
    Maller, Julian B.
    Tukiainen, Taru
    Lek, Monkol
    Ward, Lucas D.
    Kheradpour, Pouya
    Iriarte, Benjamin
    Meng, Yan
    Palmer, Cameron D.
    Esko, Tonu
    Winckler, Wendy
    Hirschhorn, Joel N.
    Kellis, Manolis
    MacArthur, Daniel G.
    Getz, Gad
    Shabalin, Andrey A.
    Li, Gen
    Zhou, Yi-Hui
    Nobel, Andrew B.
    Rusyn, Ivan
    Wright, Fred A.
    Lappalainen, Tuuli
    Ferreira, Pedro G.
    Ongen, Halit
    Rivas, Manuel A.
    Battle, Alexis
    Mostafavi, Sara
    Monlong, Jean
    Sammeth, Michael
    Mele, Marta
    Reverter, Ferran
    Goldmann, Jakob M.
    Koller, Daphne
    Guigo, Roderic
    McCarthy, Mark I.
    Dermitzakis, Emmanouil T.
    Gamazon, Eric R.
    Im, Hae Kyung
    Konkashbaev, Anuar
    Nicolae, Dan L.
    Cox, Nancy J.
    Flutre, Timothee
    Wen, Xiaoquan
    Stephens, Matthew
    [J]. SCIENCE, 2015, 348 (6235) : 648 - 660
  • [3] A survey of human brain transcriptome diversity at the single cell level
    Darmanis, Spyros
    Sloan, Steven A.
    Zhang, Ye
    Enge, Martin
    Caneda, Christine
    Shuer, Lawrence M.
    Gephart, Melanie G. Hayden
    Barres, Ben A.
    Quake, Stephen R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) : 7285 - 7290
  • [4] Gene expression elucidates functional impact of polygenic risk for schizophrenia
    Fromer, Menachem
    Roussos, Panos
    Sieberts, Solveig K.
    Johnson, Jessica S.
    Kavanagh, David H.
    Perumal, Thanneer M.
    Ruderfer, Douglas M.
    Oh, Edwin C.
    Topol, Aaron
    Shah, Hardik R.
    Klei, Lambertus L.
    Kramer, Robin
    Pinto, Dalila
    Gumus, Zeynep H.
    Cicek, A. Ercument
    Dang, Kristen K.
    Browne, Andrew
    Lu, Cong
    Xie, Lu
    Readhead, Ben
    Stahl, Eli A.
    Xiao, Jianqiu
    Parvizi, Mahsa
    Hamamsy, Tymor
    Fullard, John F.
    Wang, Ying-Chih
    Mahajan, Milind C.
    Derry, Jonathan M. J.
    Dudley, Joel T.
    Hemby, Scott E.
    Logsdon, Benjamin A.
    Talbot, Konrad
    Raj, Towfique
    Bennett, David A.
    De Jager, Philip L.
    Zhu, Jun
    Zhang, Bin
    Sullivan, Patrick F.
    Chess, Andrew
    Purcell, Shaun M.
    Shinobu, Leslie A.
    Mangravite, Lara M.
    Toyoshiba, Hiroyoshi
    Gur, Raquel E.
    Hahn, Chang-Gyu
    Lewis, David A.
    Haroutunian, Vahram
    Peters, Mette A.
    Lipska, Barbara K.
    Buxbaum, Joseph D.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (11) : 1442 - 1453
  • [5] Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    Irizarry, RA
    Hobbs, B
    Collin, F
    Beazer-Barclay, YD
    Antonellis, KJ
    Scherf, U
    Speed, TP
    [J]. BIOSTATISTICS, 2003, 4 (02) : 249 - 264
  • [6] Jaffe AE, 2017, DEV GENETIC REGULATI
  • [7] Postmortem human brain genomics in neuropsychiatric disorders - how far can we go?
    Jaffe, Andrew E.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2016, 36 : 107 - 111
  • [8] Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex
    Jaffe, Andrew E.
    Gao, Yuan
    Deep-Soboslay, Amy
    Tao, Ran
    Hyde, Thomas M.
    Weinberger, Daniel R.
    Kleinman, Joel E.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (01) : 40 - +
  • [9] Developmental regulation of human cortex transcription and its clinical relevance at single base resolution
    Jaffe, Andrew E.
    Shin, Jooheon
    Collado-Torres, Leonardo
    Leek, Jeffrey T.
    Tao, Ran
    Li, Chao
    Gao, Yuan
    Jia, Yankai
    Maher, Brady J.
    Hyde, Thomas M.
    Kleinman, Joel E.
    Weinberger, Daniel R.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (01) : 154 - +
  • [10] Accounting for cellular heterogeneity is critical in epigenome-wide association studies
    Jaffe, Andrew E.
    Irizarry, Rafael A.
    [J]. GENOME BIOLOGY, 2014, 15 (02)