Biomass-Tar-Enabled Nitrogen-Doped Highly Ultramicroporous Carbon as an Efficient Absorbent for CO2 Capture

被引:22
|
作者
Li, Denian [1 ,2 ]
Chen, Jian [1 ,2 ]
Fan, Yukun [1 ,2 ,4 ]
Deng, Lifang [1 ,2 ]
Shan, Rui [1 ,2 ]
Chen, Huibing [1 ,2 ]
Yuan, Haoran [1 ,2 ,3 ]
Chen, Yong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Renewable Energy, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
[3] Changzhou Univ, Sch Petrochem Engn, Inst Urban & Rural Min, Changzhou 213164, Jiangsu, Peoples R China
[4] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
POROUS ORGANIC POLYMERS; CROSS-LINKED POLYMERS; OXYGEN REDUCTION; DIOXIDE CAPTURE; LOW-TEMPERATURE; ADSORPTION; SELECTIVITY; ACTIVATION; CAPACITY; STORAGE;
D O I
10.1021/acs.energyfuels.9b01638
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As a notorious hazardous waste, biomass tar has for a long time been recognized as one of the key challenges throughout the progress in biomass gasification for renewable energy and chemical purposes. In this contribution, we report that biomass tar featured with considerably high carbon and nitrogen contents could serve as an ideal source for production of nitrogen-doped highly ultramicroporous carbon following the facile activation approach, which enabled a remarkably high ultramicroporosity based on a direct bottom-up strategy. Further, the disclosed evenly distributed active sites by nitrogen-doped ultramicropores displayed excellent CO2 absorption capacity as high as 6.02 and 4.11 mmol/g (1 bar) at 273 and 298 K, respectively, in addition to the corresponding ideal adsorption solvent theory selectivity of 30 and 24, which are all among the highest level of solid CO2 absorbents developed thus far. This work may inspire new sparks on rational disposal of tar-like byproducts from pyrolysis of organic solid waste and also encourage future utilization of them for advanced materials for innovative environmental applications, including CO2 capture and storage and gaseous pollution control, among others.
引用
收藏
页码:8927 / 8936
页数:10
相关论文
共 50 条
  • [1] Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO2 Capture
    Li, Di
    Chen, Yanli
    Zheng, Min
    Zhao, Haifeng
    Zhao, Yunfeng
    Sun, Zaicheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (01): : 298 - 304
  • [2] Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion
    Li, Yao
    Zou, Bo
    Hu, Changwen
    Cao, Minhua
    CARBON, 2016, 99 : 79 - 89
  • [3] Highly efficient Co centers functionalized by nitrogen-doped carbon for the chemical fixation of CO2
    Yang, Yuying
    Li, Hong
    Pei, Supeng
    Liu, Feng
    Feng, Wei
    Zhang, Yongming
    RSC ADVANCES, 2020, 10 (69) : 42408 - 42412
  • [4] Nitrogen-doped microporous carbons as highly efficient adsorbents for CO2 and Hg(II) capture
    Tang, Duanlian
    Lyu, Xiaoying
    Huang, Zhixian
    Xu, Renwei
    Chen, Jie
    Qiu, Ting
    POWDER TECHNOLOGY, 2023, 427
  • [5] Highly Efficient Nitrogen-Doped Porous Carbonaceous CO2 Adsorbents Derived from Biomass
    Pang, Ruixue
    Lu, Tingyan
    Shao, Jiawei
    Wang, Linlin
    Wu, Xiaying
    Qian, Xinyue
    Hu, Xin
    ENERGY & FUELS, 2021, 35 (02) : 1620 - 1628
  • [6] Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion
    Ma, Xiaoyu
    Zou, Bo
    Cao, Minhua
    Chen, Shi-Lu
    Hu, Changwen
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) : 18360 - 18366
  • [7] Facile synthesis of a nitrogen-doped carbon membrane for CO2 capture
    Qin, Guotong
    Zhang, Yupei
    Wei, Wei
    MATERIALS LETTERS, 2017, 209 : 75 - 77
  • [8] Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture
    Feng, Shanshan
    Li, Wei
    Shi, Quan
    Li, Yuhui
    Chen, Junchen
    Ling, Yun
    Asiri, Abdullah M.
    Zhao, Dongyuan
    CHEMICAL COMMUNICATIONS, 2014, 50 (03) : 329 - 331
  • [9] Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes
    Wu, Jingjie
    Yadav, Ram Manohar
    Liu, Mingjie
    Sharma, Pranav P.
    Tiwary, Chandra Sekhar
    Ma, Lulu
    Zou, Xiaolong
    Zhou, Xiao-Dong
    Yakobson, Boris I.
    Lou, Jun
    Ajayan, Pulickel M.
    ACS NANO, 2015, 9 (05) : 5364 - 5371
  • [10] Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction
    Shi, Han
    Cheng, Yingying
    Kang, Peng
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (03) : 269 - 277