Existence and uniqueness of positive solutions for a higher order boundary value problem

被引:24
作者
Yang, Zhilin [1 ]
机构
[1] Qingdao Technol Univ, Dept Math, Qingdao 266033, Shandong, Peoples R China
关键词
higher order boundary value problem; positive solution; spectral radius; fixed point; uniqueness;
D O I
10.1016/j.camwa.2007.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study the existence and uniqueness of positive solutions for the 2nth order boundary value problem: [GRAPHICS] The Krein-Rutman theorem and the Krasnoselskii-Zabreiko fixed point theorem are the main tools that have been used to develop our work. (c) 2007 Published by Elsevier Ltd.
引用
收藏
页码:220 / 228
页数:9
相关论文
共 22 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 4TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 116 (02) :415-426
[2]  
Agarwal R., 1989, DIFFERENTIAL INTEGRA, V2, P91
[3]   LIDSTONE POLYNOMIALS AND BOUNDARY-VALUE PROBLEMS [J].
AGARWAL, RP ;
WONG, PJY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (10) :1397-1421
[4]   Singular Lidstone boundary value problem with given maximal values for solutions [J].
Agarwal, RP ;
O'Regan, D ;
Stanek, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (7-8) :859-881
[5]  
AGARWAL RP, 1982, J COMPUT APPL MATH, V8, P145, DOI DOI 10.1016/0771-050X(82)90035-3
[6]  
AVERY RI, 2000, ELECT J DIFFERENTIAL, V40, P1
[7]   Solutions of 2nth Lidstone boundary value problems and dependence on higher order derivatives [J].
Bai, ZB ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :442-450
[8]  
DANCER EN, 1973, ARCH RATION MECH AN, V52, P181
[9]   Triple positive solutions and dependence on higher order derivatives [J].
Davis, JM ;
Eloe, PW ;
Henderson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (02) :710-720
[10]  
De Coster C., 1994, INT J MATH MATH SCI, V17, P725, DOI 10.1155/s0161171294001031