Univariable affine fractal interpolation functions

被引:0
|
作者
Drakopoulos, V. [1 ]
Vijender, N. [2 ]
机构
[1] Univ Thessaly, Dept Comp Sci & Biomed Informat, Lamia, Greece
[2] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, Maharashtra, India
关键词
attractor; dynamic system; fractal interpolation; iterated function system;
D O I
10.1134/S0040577921060015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An overview of affine fractal interpolation functions using a suitable iterated function system is presented. Furthermore, a brief and coarse discussion on the theory of affine fractal interpolation functions in 2D and their recent developments including some of the research done by the authors is provided. Moreover, the desired range of the contractivity factors of an affine fractal interpolation surface are identified such that it is monotonic and positive for the respective monotonic and positive surface data. All the shape-preserving fractal schemes developed here are verified by numerical experiments.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 50 条
  • [1] Univariable affine fractal interpolation functions
    V. Drakopoulos
    N. Vijender
    Theoretical and Mathematical Physics, 2021, 207 : 689 - 700
  • [2] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [3] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [4] Affine recurrent fractal interpolation functions
    N. Balasubramani
    A. Gowrisankar
    The European Physical Journal Special Topics, 2021, 230 : 3765 - 3779
  • [5] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [6] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [7] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302
  • [8] ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS
    Hsieh, Liang-Yu
    Luor, Dah-Chin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1321 - 1330
  • [9] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [10] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)