Generalized invexity and duality in multiobjective programming problems

被引:84
作者
Aghezzaf, B [1 ]
Hachimi, M [1 ]
机构
[1] Fac Sci Ain Chock, Dept Math & Informat, Casablanca, Morocco
关键词
multiobjective programming; efficient solution; convexity; invexity; type I; weak; strong; converse duality;
D O I
10.1023/A:1008321026317
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we are concerned with the multiobjective programming problem with inequality constraints. We introduce new classes of generalized type I vector-valued functions. Duality theorems are proved for Mond-Weir and general Mond-Weir type duality under the above generalized type I assumptions.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 12 条
[1]  
AGHEZZAF B, 1998, P 2 INT C APPL MATH, P16
[2]  
[Anonymous], ANAL NUMER THEOR APP
[3]   CONSTRAINED MINIMIZATION UNDER VECTOR-VALUED CRITERIA IN FINITE DIMENSIONAL SPACES [J].
DACUNHA, NO ;
POLAK, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 19 (01) :103-+
[5]  
Giorgi G, 1998, NONCON OPTIM ITS APP, V27, P389
[6]   NECESSARY AND SUFFICIENT CONDITIONS IN CONSTRAINED OPTIMIZATION [J].
HANSON, MA ;
MOND, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :51-58
[7]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[8]   OPTIMALITY CRITERIA AND DUALITY IN MULTIPLE-OBJECTIVE OPTIMIZATION INVOLVING GENERALIZED INVEXITY [J].
KAUL, RN ;
SUNEJA, SK ;
SRIVASTAVA, MK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) :465-482
[9]   CONSTRAINT QUALIFICATIONS IN MULTIOBJECTIVE OPTIMIZATION PROBLEMS - DIFFERENTIABLE CASE [J].
MAEDA, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) :483-500
[10]  
MANAGASARIAN OL, 1969, NONLINEAR PROGRAMMIN