Semiquantum secret sharing using entangled states

被引:167
作者
Li, Qin [1 ,2 ,3 ]
Chan, W. H. [3 ]
Long, Dong-Yang [2 ]
机构
[1] Xiangtan Univ, Coll Informat Engn, Xiangtan 411105, Peoples R China
[2] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 02期
关键词
QUANTUM INFORMATION;
D O I
10.1103/PhysRevA.82.022303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Bandyopadhyay S, 2000, PHYS REV A, V62, DOI 10.1103/PhysRevA.62.012308
[2]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[3]  
Blakley G.R., 1979, INT WORKSH MAN REQ K, DOI [10.1109/MARK.1979.8817296, DOI 10.1109/MARK.1979.8817296]
[4]  
BOYER M, 2007, P 1 INT C QUANT NAN, P10
[5]   Semiquantum key distribution [J].
Boyer, Michel ;
Gelles, Ran ;
Kenigsberg, Dan ;
Mor, Tal .
PHYSICAL REVIEW A, 2009, 79 (03)
[6]   Quantum key distribution with classical Bob [J].
Boyer, Michel ;
Kenigsberg, Dan ;
Mor, Tal .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)
[7]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[8]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[9]   Bell inequality, Bell states and maximally entangled states for n qubits [J].
Gisin, N ;
Bechmann-Pasquinucci, H .
PHYSICS LETTERS A, 1998, 246 (1-2) :1-6
[10]   Theory of quantum secret sharing [J].
Gottesman, D .
PHYSICAL REVIEW A, 2000, 61 (04) :8