Comparison results and steady states for the Fujita equation with fractional Laplacian

被引:44
作者
Birkner, M
López-Mimbela, JA
Wakolbinger, A [1 ]
机构
[1] JW Goethe Univ, FB Math, D-60054 Frankfurt, Germany
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[3] Ctr Invest Matemat, Guanajuato 36000, Mexico
[4] Univ Frankfurt, FB Math, D-60054 Frankfurt, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2005年 / 22卷 / 01期
关键词
blow-up and extinction of solutions of semilinear PDEs; comparison; Feynman-Kac representation; symmetry of solutions; symmetric stable processes; method of moving planes;
D O I
10.1016/j.anihpc.2004.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a semilinear PDE generalizing the Fujita equation whose evolution operator is the sum of a fractional power of the Laplacian and a convex non-linearity. Using the Feynman-Kac representation we prove criteria for asymptotic extinction versus finite time blow up of positive solutions based on comparison with global solutions. For a critical power non-linearity we obtain a two-parameter family of radially symmetric stationary solutions. By extending the method of moving planes to fractional powers of the Laplacian we prove that all positive steady states of the corresponding equation in a finite ball are radially symmetric. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 29 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Aleksandrov A. D., 1957, Vestnik Leningrad. Univ., V12, P15
[3]  
Aleksandrov A. D., 1958, VESTNIK LENINGRAD U, V13, P5
[4]  
Aleksandrov AD., 1956, VESTNIK LENINGRAD U, V11, P5
[5]  
Alexandrov A.D., 1958, VESTNIK LENINGRAD IN, V13, P27
[6]  
Alexandrov A. D., 1958, VESTNIK LENINGRAD IN, V13, P14
[7]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[8]  
[Anonymous], 1944, TREATISE THEORY BESS
[9]  
Bianchi G, 1997, COMMUN PART DIFF EQ, V22, P1671
[10]   Blow-up of semilinear PDE's at the critical dimension.: A probabilistic approach [J].
Birkner, M ;
López-Mimbela, JA ;
Wakolbinger, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2431-2442