Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons

被引:49
作者
De Nardis, J. [1 ]
Caux, J-S [1 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2014年
关键词
quantum integrability (Bethe ansatz); thermodynamic Bethe ansatz; quantum gases; quantum quenches; QUANTUM; STATE; DYNAMICS; GAS;
D O I
10.1088/1742-5468/2014/12/P12012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We apply the logic of the quench action to give an exact analytical expression for the time evolution of the one-body density matrix after an interaction quench in the Lieb-Liniger model from the ground state of the free theory (BEC state) to the infinitely repulsive regime. In this limit there exists a mapping between the bosonic wavefuntions and the free fermionic ones but this does not help the computation of the one-body density matrix which is sensitive to particle statistics. The final expression, given in terms of the difference of two Fredholm Pfaffians, can be numerically evaluated and is valid in the thermodynamic limit and for all times after the quench.
引用
收藏
页数:22
相关论文
共 83 条
[1]  
[Anonymous], ARXIV14098482
[2]   Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems [J].
Banuls, M. C. ;
Cirac, J. I. ;
Hastings, M. B. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[3]   Quantum quenches in the anisotropic spin-1/2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
NEW JOURNAL OF PHYSICS, 2010, 12
[4]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[5]   Dephasing and the steady state in quantum many-particle systems [J].
Barthel, T. ;
Schollwoeck, U. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[6]   Quantum quench in the sine-Gordon model [J].
Bertini, Bruno ;
Schuricht, Dirk ;
Essler, Fabian H. L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[7]   "Light-Cone" Dynamics After Quantum Quenches in Spin Chains [J].
Bonnes, Lars ;
Essler, Fabian H. L. ;
Lauchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[8]  
Bornemann F, 2010, MATH COMPUT, V79, P871, DOI 10.1090/S0025-5718-09-02280-7
[9]   A note on the Pfaffian integration theorem [J].
Borodin, Alexei ;
Kanzieper, Eugene .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) :F849-F855
[10]   Quench dynamics in randomly generated extended quantum models [J].
Brandino, G. P. ;
De Luca, A. ;
Konik, R. M. ;
Mussardo, G. .
PHYSICAL REVIEW B, 2012, 85 (21)