In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
机构:
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Nanjing Normal Univ, Taizhou Coll, Taizhou 225300, Peoples R ChinaGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
Wang, Chunmei
Wang, Junping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USAGeorgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
机构:
Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
CNR, Ist Matemat Appl & Tecnol Informat E Magenes, I-27100 Pavia, ItalyLos Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
Manzini, Gianmarco
Russo, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Matemat Appl & Tecnol Informat E Magenes, I-27100 Pavia, Italy
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, ItalyLos Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
Russo, Alessandro
Sukumar, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USALos Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA