New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条