New finite element methods in computational fluid dynamics by H(div) elements

被引:89
|
作者
Wang, Junping
Ye, Xiu
机构
[1] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
关键词
finite element methods; Stokes problem; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS;
D O I
10.1137/060649227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
引用
收藏
页码:1269 / 1286
页数:18
相关论文
共 50 条
  • [1] Finite element methods for the Navier-Stokes equations by H(div) elements
    Wang, Junping
    Wang, Xiaoshen
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 410 - 436
  • [2] FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS
    Junping Wang Division of Mathematical Sciences
    JournalofComputationalMathematics, 2008, 26 (03) : 410 - 436
  • [3] Finite Element Framework for Computational Fluid Dynamics in FEBIO
    Ateshian, Gerard A.
    Shim, Jay J.
    Maas, Steve A.
    Weiss, Jeffrey A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (02):
  • [4] Fluid-structure interaction with H(div)-conforming finite elements
    Neunteufel, Michael
    Schoberl, Joachim
    COMPUTERS & STRUCTURES, 2021, 243
  • [5] H(div)-CONFORMING FINITE ELEMENTS FOR THE BRINKMAN PROBLEM
    Konno, Juho
    Stenberg, Rolf
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) : 2227 - 2248
  • [6] A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics
    Rio-Martin, Laura
    Busto, Saray
    Dumbser, Michael
    MATHEMATICS, 2021, 9 (18)
  • [7] Convergence analysis of finite element methods for H(div;Ω)-elliptic interface problems
    Hiptmair, R.
    Li, J.
    Zou, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (03) : 187 - 218
  • [8] A UNIFORMLY ROBUST H(DIV) WEAK GALERKIN FINITE ELEMENT METHODS FOR BRINKMAN PROBLEMS
    Mu, Lin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1422 - 1439
  • [9] A ROBUST NUMERICAL METHOD FOR STOKES EQUATIONS BASED ON DIVERGENCE-FREE H(div) FINITE ELEMENT METHODS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04) : 2784 - 2802
  • [10] H(div) and H(curl)-conforming virtual element methods
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 303 - 332