In this paper, the authors present two formulations for the Stokes problem which make use of the existing H(div) elements of the Raviart-Thomas type originally developed for the second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed particularly for the new formulations. Optimal-order error estimates are established for the corresponding finite element solutions in vaxious Sobolev norms. The finite element solutions feature a full satisfaction of the continuity equation when existing Raviart-Thomas-type elements are employed in the numerical scheme.
机构:
Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
da Veiga, L. Beirao
Brezzi, F.
论文数: 0引用数: 0
h-index: 0
机构:
IUSS, Piazza Vittoria 15, I-27100 Pavia, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
Brezzi, F.
Marini, L. D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
Marini, L. D.
Russo, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 57, I-20125 Milan, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy