On the classification of quaternionic Mobius transformations

被引:28
作者
Cao, WS [1 ]
Parker, JR
Wang, XT
机构
[1] Hunan Univ Sci & Technol, Inst Math & Software, Xiangtan 411201, Hunan, Peoples R China
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[3] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
D O I
10.1017/S0305004104007868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider quaternionic Mobius transformations preserving the unit ball in the quaternions H. In other words, maps of the form g(z) = (az + b)(cz + d)(-1) where a, b, c and d all lie in H with the property that \g(z)\ < 1 for all \z\ < 1. We give an explicit expression for the fixed points of g in terms of a, b. c and d and we use this to classify quaternionic Mobius transformations into six categories determined by their dynamics.
引用
收藏
页码:349 / 361
页数:13
相关论文
共 13 条
  • [1] Ahlfors L.V., 1985, DIFFERENTIAL GEOMETR, P65
  • [2] ON THE FIXED-POINTS OF MOBIUS TRANSFORMATIONS IN RN
    AHLFORS, LV
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01): : 15 - 27
  • [3] Cao C, 1998, QUASICONFORMAL MAPPINGS AND ANALYSIS, P109
  • [4] Chen SS., 1974, HYPERBOLIC SPACES CO, P49
  • [5] Quadratic formulas for quaternions
    Huang, LP
    So, WS
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 533 - 540
  • [6] On left eigenvalues of a quaternionic matrix
    Huang, LP
    So, WS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 323 (1-3) : 105 - 116
  • [7] Quaternions and some global properties of hyperbolic 5-manifolds
    Kellerhals, R
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (05): : 1080 - 1099
  • [8] Kellerhals R, 2001, ANN ACAD SCI FENN-M, V26, P51
  • [9] Geometry of quaternionic hyperbolic manifolds
    Kim, I
    Parker, JR
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 135 : 291 - 320
  • [10] Niven J., 1941, Am. Math Mon, V48, P654, DOI [10.1080/00029890.1941.11991158, DOI 10.1080/00029890.1941.11991158]