The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films

被引:60
作者
Oh, Yuhong [1 ,2 ]
Ahn, Donggi [1 ,2 ]
Nam, Seunghoon [1 ,2 ]
Park, Byungwoo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Res Ctr Energy Convers & Storage, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
Li-ion battery; LiCoO2; Al2O3; Nanoscale coating; H2O scavenge; CYCLE-LIFE PERFORMANCE; CATHODE MATERIALS; COBALT DISSOLUTION; LITHIUM; STABILITY; ELECTRODES;
D O I
10.1007/s10008-009-0946-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical properties of nanoscale Al2O3-coated LiCoO2 thin films were examined as a function of the coating coverage. Al2O3-coated LiCoO2 films showed enhanced cycle-life performance with increasing degree of coating coverage, which was attributed to the suppression of Co dissolution and F- concentration in the electrolyte. Moreover, an Al2O3-coating layer with partial coverage clearly improved the electrochemical properties, even at 60 A degrees C or with a water-contaminated electrolyte. Even though metal-oxide coating on LiCoO2 has been actively investigated, the mechanisms of nanoscale coating have yet to be clearly identified. In this article, surface analysis suggested that the Al2O3-coating layer had transformed to an AlF3 a (TM) 3H(2)O layer during cycling, which inhibited the generation of HF by scavenging H2O molecules present in the electrolyte.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 35 条
[1]   Electrochemical stability in cerium-phosphate-coated LioO2 thin films [J].
Ahn, Donggi ;
Kim, Chunjoong ;
Lee, Joon-Gon ;
Kim, Byoungsoo ;
Park, Yejun ;
Park, Byoungwoo .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (03) :688-694
[2]   Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
SOLID STATE IONICS, 1996, 83 (1-2) :167-173
[3]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[4]   Studies of LiCoO2 coated with metal oxides [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) :A221-A224
[5]   Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell [J].
Cho, J ;
Kim, TG ;
Kim, C ;
Lee, JG ;
Kim, YW ;
Park, B .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :58-64
[6]   A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO4 nanoparticles [J].
Cho, J ;
Kim, YW ;
Kim, B ;
Lee, JG ;
Park, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (14) :1618-1621
[7]   LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J].
Cho, J ;
Kim, YJ ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1110-A1115
[8]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[9]  
2-A
[10]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791