Linear waves in two-layer fluids over periodic bottoms

被引:2
作者
Yu, Jie [1 ,2 ]
Maas, Leo R. M. [3 ,4 ]
机构
[1] SUNY Stony Brook, Dept Civil Engn, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA
[3] Royal Netherlands Inst Sea Res, POB 59, NL-1790 AB Texel, Netherlands
[4] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
基金
美国国家科学基金会;
关键词
geophysical and geological flows; internal waves; stratified flows; INTERNAL WAVES; RECTANGULAR TANK; BRAGG RESONANCE; WATER-WAVES; ATTRACTOR; CORRUGATIONS; PROPAGATION;
D O I
10.1017/jfm.2016.198
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and generalized wavenumber (Floquet exponent), and for the waveforms of free wave modes. These are the analogues of the classical Lamb's solutions for two-layer fluids over a flat bottom. For internal modes the interfacial wave shows rapid modulation at the scale of its own wavelength that is comparable to the bottom wavelength, whereas for surface modes it becomes a long wave carrier for modulating short waves of the bottom wavelength. The approximation using a rigid lid is given. Sample calculations are shown, including the solutions that are inside the forbidden bands (i.e. Bragg resonated).
引用
收藏
页码:700 / 718
页数:19
相关论文
共 22 条
  • [1] Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis
    Alam, Mohammad-Reza
    Liu, Yuming
    Yue, Dick K. P.
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 624 : 191 - 224
  • [2] A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions
    Athanassoulis, GA
    Belibassakis, KA
    [J]. JOURNAL OF FLUID MECHANICS, 1999, 389 : 275 - 301
  • [3] Impact of channel geometry and rotation on the trapping of internal tides
    Drijfhout, Sybren
    Maas, Leo R. M.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (11) : 2740 - 2763
  • [4] Tidally generated internal-wave attractors between double ridges
    Echeverri, P.
    Yokossi, T.
    Balmforth, N. J.
    Peacock, T.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 669 : 354 - 374
  • [5] Numerical simulation of a two-dimensional internal wave attractor
    Grisouard, Nicolas
    Staquet, Chantal
    Pairaud, Ivane
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 614 : 1 - 14
  • [6] Observations on the wavenumber spectrum and evolution of an internal wave attractor
    Hazewinkel, Jeroen
    Van Breevoort, Pieter
    Dalziel, Stuart B.
    Maas, Leo R. M.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 598 : 373 - 382
  • [7] Comparison of laboratory and numerically observed scalar fields of an internal wave attractor
    Hazewinkel, Jeroen
    Grisouard, Nicolas
    Dalziel, Stuart B.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (01) : 51 - 56
  • [8] Observations on the robustness of internal wave attractors to perturbations
    Hazewinkel, Jeroen
    Tsimitri, Chrysanthi
    Maas, Leo R. M.
    Dalziel, Stuart B.
    [J]. PHYSICS OF FLUIDS, 2010, 22 (10)
  • [9] Normal modes of a rectangular tank with corrugated bottom
    Howard, Louis N.
    Yu, Jie
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 593 : 209 - 234
  • [10] Lamb H., 1945, Hydrodynamics