NON-LINEAR NOISE ADAPTIVE KALMAN FILTERING VIA VARIATIONAL BAYES

被引:56
作者
Sarkka, Simo [1 ]
Hartikainen, Jouni [2 ]
机构
[1] Aalto Univ, Espoo 02150, Finland
[2] Rocsole Ltd, Kuopio 70211, Finland
来源
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2013年
关键词
variational Bayes; unknown noise covariance; adaptive filtering; non-linear Kalman filtering; TRANSFORMATION; COVARIANCES; MODELS;
D O I
10.1109/MLSP.2013.6661935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider joint estimation of state and time-varying noise covariance matrices in non-linear stochastic state space models. We propose a variational Bayes and Gaussian non-linear filtering based algorithm for efficient computation of the approximate filtering posterior distributions. The formulation allows the use of efficient Gaussian integration methods such as unscented transform, cubature integration and Gauss-Hermite integration along with the classical Taylor series approximations. The performance of the algorithm is illustrated in a simulated application.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Agamennoni G, 2011, IEEE INT CONF ROBOT, P1551
[2]  
[Anonymous], 2006, SIG COM TEC
[3]  
[Anonymous], 2021, Bayesian data analysis
[4]  
[Anonymous], THESIS
[5]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[6]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[7]  
Beal M. J., 2001, TR01003
[8]  
Deisenroth M. P., 2009, P 26 INT C MACH LEAR
[9]  
Djuric P. M., 2002, P IEEE INT C AC SPEE
[10]   Gaussian filters for nonlinear filtering problems [J].
Ito, K ;
Xiong, KQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :910-927