IMPROVING NORMAL TISSUE COMPLICATION PROBABILITY MODELS: THE NEED TO ADOPT A "DATA-POOLING" CULTURE

被引:88
作者
Deasy, Joseph O. [1 ]
Bentzen, Soren M. [2 ]
Jackson, Andrew [3 ]
Ten Haken, Randall K. [4 ]
Yorke, Ellen D. [5 ]
Constine, Louis S. [3 ]
Sharma, Ashish [6 ]
Marks, Lawrence B. [7 ]
机构
[1] Washington Univ, Sch Med, Dept Radiat Oncol, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[2] Univ Wisconsin, Sch Med, Dept Human Oncol, Madison, WI USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[4] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[5] Univ Rochester, Ctr Canc, Dept Radiat Oncol, Rochester, NY 14642 USA
[6] Emory Univ, Ctr Comprehens Informat, Atlanta, GA 30322 USA
[7] Univ N Carolina, Dept Radiat Oncol, Chapel Hill, NC USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2010年 / 76卷 / 03期
关键词
NTCP; Normal tissue complication probability models; Data sharing; Data reuse; Data pooling; CELL LUNG-CANCER; RADIATION PNEUMONITIS; BIOMEDICAL-RESEARCH; RADIOTHERAPY;
D O I
10.1016/j.ijrobp.2009.06.094
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Clinical studies of the dependence of normal tissue response on dose-volume factors are often confusingly inconsistent, as the QUANTEC reviews demonstrate. A key opportunity to accelerate progress is to begin storing high-quality datasets in repositories. Using available technology, multiple repositories could be conveniently queried, without divulging protected health information, to identify relevant sources of data for further analysis. After obtaining institutional approvals, data could then be pooled, greatly enhancing the capability to construct predictive models that are more widely applicable and better powered to accurately identify key predictive factors (whether dosimetric, image-based, clinical, socioeconomic, or biological). Data pooling has already been carried out effectively in a few normal tissue complication probability studies and should become a common strategy. (C) 2010 Elsevier Inc.
引用
收藏
页码:S151 / S154
页数:4
相关论文
共 16 条
[1]   A nomogram to predict radiation pneumonitis, derived from a combined analysis of rtog 9311 and institutional data [J].
Bradley, Jeffrey D. ;
Hope, Andrew ;
El Naqa, Issam ;
Apte, Aditya ;
Lindsay, Patricia E. ;
Bosch, Walter ;
Matthews, John ;
Sause, Wrlliam ;
Graham, Mary V. ;
Deasy, Joseph O. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (04) :985-992
[2]   Constraints on Data Sharing Experience From the Nurses' Health Study [J].
Colditz, Graham A. .
EPIDEMIOLOGY, 2009, 20 (02) :169-171
[3]   CERR: A computational environment for radiotherapy research [J].
Deasy, JO ;
Blanco, AI ;
Clark, VH .
MEDICAL PHYSICS, 2003, 30 (05) :979-985
[4]   Epidemiology, Data Sharing, and the Challenge of Scientific Replication [J].
Hernan, Miguel A. ;
Wilcox, Allen J. .
EPIDEMIOLOGY, 2009, 20 (02) :167-168
[5]   Clinical, dosimetric, and location-related factors to predict local control in non-small cell lung cancer [J].
Hope, AJ ;
Lindsay, PE ;
El Naqa, I ;
Bradley, JD ;
Vivic, M ;
Deasy, JO .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02) :S231-S231
[6]   Sharing primary data: a threat or asset to discovery? [J].
Koslow, SH .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (04) :311-313
[7]   Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients [J].
Kwa, SLS ;
Lebesque, JV ;
Theuws, JCM ;
Marks, LB ;
Munley, MT ;
Bentel, G ;
Oetzel, D ;
Spahn, U ;
Ten Haken, RK ;
Drzymala, RE ;
Purdy, JA ;
Lichter, AS ;
Martel, MK ;
TEN Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (01) :1-9
[8]   The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy [J].
Li, Yun ;
Taylor, Jeremy M. G. ;
Ten Haken, Randall K. ;
Eisbruch, Avraham .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 67 (03) :660-669
[9]   Statistical modeling of tumor control probability for non-small-cell lung cancer radiotherapy [J].
Mu, Y. ;
Hope, A. J. ;
Lindsay, P. ;
El Naqa, I. ;
Apte, A. ;
Deasy, J. O. ;
Bradley, J. D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 72 (01) :S448-S448
[10]   caGrid 1.0: An enterprise Grid infrastructure for biomedical research [J].
Oster, Scott ;
Langella, Stephen ;
Hastings, Shannon ;
Ervin, David ;
Madduri, Ravi ;
Phillips, Joshua ;
Kurc, Tahsin ;
Siebenlist, Frank ;
Covitz, Peter ;
Shanbhag, Krishnakant ;
Foster, Ian ;
Saltz, Joel .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2008, 15 (02) :138-149