A Variant of Projection-Regularization Method for Ill-Posed Linear Operator Equations

被引:5
作者
Tahar, Bechouat [1 ,2 ]
Nadjib, Boussetila [2 ,3 ]
Faouzia, Rebbani [4 ]
机构
[1] Mohammed Cherif Messaadia Univ, Dept Math & Informat, Fac Sci & Technol, POB 1553, Souk Ahras 41000, Algeria
[2] Univ Badji Mokhtar Annaba, Appl Math Lab, POB 12, Annaba 23000, Algeria
[3] Univ 8 Mai 1945 Gulma, Dept Math, Fac MISM, POB 401, Guelma 24000, Algeria
[4] Univ Badji Mokhtar Annaba, Ecole Super Technol Ind ESTI, Appl Math Lab, POB 12, Annaba 23000, Algeria
关键词
First kind Fredholm integral equations; ill-posed problems; finite rank approximation; Tikhonov regularization; FREDHOLM INTEGRAL-EQUATIONS; PARAMETER CHOICE; INVERSE PROBLEMS; TIKHONOV REGULARIZATION; CONVERGENCE ANALYSIS; SELF-REGULARIZATION; APPROXIMATION; DISCRETIZATION;
D O I
10.1142/S0219876221500080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we report on a strategy for computing the numerical approximate solution for a class of ill-posed operator equations in Hilbert spaces: K : E -> F,Kf = g. This approach is a combination of Tikhonov regularization method and the finite rank approximation of K*K. Finally, numerical results are given to show the effectiveness of this method.
引用
收藏
页数:35
相关论文
共 70 条
  • [1] A trigonometrical approach for some projection methods
    Abramovitz, B
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1999, 56 (01) : 99 - 117
  • [2] Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Albani, V.
    Elbau, P.
    de Hoop, M. V.
    Scherzer, O.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) : 521 - 540
  • [3] [Anonymous], 2012, SPECTRAL METHODS FLU
  • [4] [Anonymous], 2006, SPECTRAL METHODS
  • [5] [Anonymous], 2008, NUMERICAL APPROXIMAT
  • [6] ARCANGELI R, 1966, CR ACAD SCI A MATH, V263, P282
  • [7] Self-regularization of projection methods with a posteriori discretization level choice for severely ill-posed problems
    Bruckner, G
    Pereverzev, SV
    [J]. INVERSE PROBLEMS, 2003, 19 (01) : 147 - 156
  • [8] Chen Z., 2008, J INTEGRAL EQUAT, V20, P569
  • [9] Chen Z., 2015, MULTISCALE METHODS F
  • [10] Multiscale collocation methods for ill-posed integral equations via a coupled system
    Chen, Zhongying
    Ding, Shengpei
    Xu, Yuesheng
    Yang, Hongqi
    [J]. INVERSE PROBLEMS, 2012, 28 (02)