Edge connectivity and the spectral gap of combinatorial and quantum graphs

被引:35
作者
Berkolaiko, Gregory [1 ]
Kennedy, James B. [2 ,3 ]
Kurasov, Pavel [4 ]
Mugnolo, Delio [5 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Stuttgart, Inst Anal Dynam & Modellierung, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Univ Lisbon, Fac Sci, Grp Math Phys, Edificio C6, P-1749016 Lisbon, Portugal
[4] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[5] Fernuniv, Fak Math & Informat, Lehrgebiet Anal, D-58084 Hagen, Germany
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
quantum graph; graph; Laplacian; Sturm-Liouville problem; spectral gap; spectral geometry; EIGENVALUES;
D O I
10.1088/1751-8121/aa8125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Levy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are 'asymptotically correct', i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.
引用
收藏
页数:29
相关论文
共 31 条
  • [1] NLS ground states on graphs
    Adami, Riccardo
    Serra, Enrico
    Tilli, Paolo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 743 - 761
  • [2] [Anonymous], 1997, C BOARD MATH SCI
  • [3] [Anonymous], 1998, GRAD TEXT M
  • [4] Ariturk S, 2016, ARXIV160907471
  • [5] Band R, 2016, ARXIV160800520
  • [6] Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs
    Band, Ram
    Berkolaiko, Gregory
    Weyand, Tracy
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (12)
  • [7] Berkolaiko G, 2012, P SYMP PURE MATH, V84, P117
  • [8] Berkolaiko G, 2016, ARXIV160307356
  • [9] Berkolaiko G, 2013, MATH SURVEYS MONOGRA, V186
  • [10] Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph
    Berkolaiko, Gregory
    Liu, Wen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 803 - 818