A quasi-exactly solvable Lipkin-Meshkov-Glick model

被引:1
作者
Pan, Feng [1 ,2 ]
Lin, Jijie [1 ]
Xue, Xiaogang [1 ]
Draayer, J. P. [2 ]
机构
[1] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
BODY APPROXIMATION METHODS; BOSE-HUBBARD MODEL; QUANTUM DYNAMICS; VALIDITY; TRANSITION; SYSTEMS;
D O I
10.1088/1751-8113/43/18/185203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that a special Lipkin-Meshkov-Glickmodel is quasi-exactly solvable with solutions that can be expressed in the SU(2) coherent state form. Ground-state properties of the model are studied analytically. We also show that the model reduces to the standard two-site Bose-Hubbard model in the large-N limit for finite U/t or large (N - 1)vertical bar U vertical bar/t cases with finite N, which proves that in these cases the ground state of the standard two-site Bose-Hubbard model is an SU(2) coherent state.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory
    Anglin, JR
    Vardi, A
    [J]. PHYSICAL REVIEW A, 2001, 64 (01) : 9
  • [2] SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS
    BOTET, R
    JULLIEN, R
    PFEUTY, P
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (07) : 478 - 481
  • [3] Quantum superposition states of Bose-Einstein condensates
    Cirac, JI
    Lewenstein, M
    Molmer, K
    Zoller, P
    [J]. PHYSICAL REVIEW A, 1998, 57 (02): : 1208 - 1218
  • [4] Finite-size scaling exponents of the Lipkin-Meshkov-Glick model
    Dusuel, S
    Vidal, J
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (23)
  • [5] PHASE-TRANSITIONS AND THE GEOMETRIC-PROPERTIES OF THE INTERACTING BOSON MODEL
    FENG, DH
    GILMORE, R
    DEANS, SR
    [J]. PHYSICAL REVIEW C, 1981, 23 (03): : 1254 - 1258
  • [6] FISHER MPA, 1989, PHYS REV B, V40, P546, DOI 10.1063/1.38820
  • [7] CLASSICAL LIMIT OF QUANTUM NON-SPIN SYSTEMS
    GILMORE, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (05) : 891 - 893
  • [8] VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS
    GLICK, AJ
    LIPKIN, HJ
    MESHKOV, N
    [J]. NUCLEAR PHYSICS, 1965, 62 (02): : 211 - &
  • [9] Quantum phases of dipolar bosons in optical lattices -: art. no. 170406
    Góral, K
    Santos, L
    Lewenstein, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [10] Quantum phase transition of two-component Bose-Einstein condensates in optical lattices
    Gu, J
    Zhang, YP
    Li, ZD
    Liang, JQ
    [J]. PHYSICS LETTERS A, 2005, 335 (04) : 310 - 315