Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments

被引:58
|
作者
Yin, Xiangrui [1 ]
Yi, Bin [1 ]
Chen, Wei [1 ]
Zhang, Weijie [1 ]
Tu, Jinxing [1 ]
Fernando, W. G. Dilantha [2 ]
Fu, Tingdong [1 ]
机构
[1] Huazhong Agr Univ, Wuhan 430070, Peoples R China
[2] Univ Manitoba, Dept Plant Sci, Winnipeg, MB R3T, Canada
关键词
Brassica napus; Partial disease resistance; QTL mapping; Resistance identification method; Sclerotinia sclerotiorum; QUANTITATIVE TRAIT LOCI; EXPRESSION; MARKERS; JUNCEA; RFLP; TIME; L;
D O I
10.1007/s10681-009-0095-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Sclerotinia stem rot, caused by the fungus Sclerotinia sclerotiorum, is one of the most devastating diseases of rapeseed (Brassica napus L.) in China. The two major factors limiting the development of disease resistance are (1) the absence of accessions with complete resistance and (2) the lack of a single method that can be widely applied to assess tolerance-even though accessions with differential tolerance to S. sclerotiorum have been identified in China. In the study reported here, we have used one doubled haploid (DH) population consisting of 72 lines, which was derived from the F(1) generation of a cross between a partially resistant line (DH821) and a susceptible line (DHBao604), to identify quantitative trait loci (QTLs) involved in the resistance to S. sclerotiorum. Three inoculation methods, namely, mycelial toothpick inoculation (MTI), mycelial plug inoculation (MPI), and infected petal inoculation (IPI), were used to assess resistance at the adult plant stage. A genetic linkage map with 20 linkage groups covering 1746.5 cM, with an average space of 6.93 cM, was constructed using a total of 252 molecular markers, including 91 simple sequence repeats, 72 randomly amplified polymorphic DNA, 86 sequence-related amplified polymorphisms, two restriction fragment length polymorphisms, and one expressed sequence tag. Composite interval mapping identified ten, one and ten QTLs using MTI, MPI and IPI methods, respectively, at a LOD > 2.5. One QTL was detected in linkage group N12 by MTI in 2004 and 2005 and by IPI in 2005. Another QTL was detected in linkage group N3 and N4 by MPI in 2006 and 2007. There was one common QTL detected by MTI in 2005 and by MPI in 2006. These results provide information on the genetic control of resistance to S. sclerotiorum in oilseed rape.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments
    Xiangrui Yin
    Bin Yi
    Wei Chen
    Weijie Zhang
    Jinxing Tu
    W. G. Dilantha Fernando
    Tingdong Fu
    Euphytica, 2010, 173 : 25 - 35
  • [2] The association of Sclerotinia sclerotiorum resistance with glucosinolates in Brassica napus double-low DH population
    Fan, Z. X.
    Lei, W. X.
    Sun, X. L.
    Yu, B.
    Wang, Y. Z.
    Yang, G. S.
    JOURNAL OF PLANT PATHOLOGY, 2008, 90 (01) : 43 - 48
  • [3] Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus
    Khan, Muhammad Azam
    Cowling, Wallace
    Banga, Surinder Singh
    You, Ming Pei
    Tyagi, Vikrant
    Bharti, Baudh
    Barbetti, Martin J.
    EUPHYTICA, 2020, 216 (05)
  • [4] Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus
    Muhammad Azam Khan
    Wallace Cowling
    Surinder Singh Banga
    Ming Pei You
    Vikrant Tyagi
    Baudh Bharti
    Martin J. Barbetti
    Euphytica, 2020, 216
  • [5] The primary study of oligochitosan inducing resistance to Sclerotinia sclerotiorum on Brassica napus
    Yin, Heng
    Bai, Xuefang
    Du, Yuguang
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S600 - S601
  • [6] Lectin genes in canola (Brassica napus) confer resistance to Sclerotinia sclerotiorum
    Buchwaldt, L.
    Hegedus, D.
    Dzananovic, E.
    Bekkaoui, D.
    Durkin, J.
    Fu, F.
    Nettleton, J.
    PHYTOPATHOLOGY, 2018, 108 (10) : 173 - 173
  • [7] Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus
    Jiqiang Li
    Zunkang Zhao
    Alice Hayward
    Hongyu Cheng
    Donghui Fu
    Euphytica, 2015, 205 : 483 - 489
  • [8] Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum
    Y. Fan
    K. Du
    Y. Gao
    Y. Kong
    C. Chu
    V. Sokolov
    Y. Wang
    Russian Journal of Genetics, 2013, 49 : 380 - 387
  • [9] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea
    Yijuan Ding
    Jiaqin Mei
    Qinfei Li
    Yao Liu
    Huafang Wan
    Lei Wang
    Heiko C. Becker
    Wei Qian
    Genetic Resources and Crop Evolution, 2013, 60 : 1615 - 1619
  • [10] Evaluation of Brassica napus accessions for resistance to Sclerotinia sclerotiorum in greenhouse and field conditions
    Khot, S.
    Bradley, C.
    Bilgi, V.
    del Rio, L.
    PHYTOPATHOLOGY, 2005, 95 (06) : S53 - S53