Slip-dependent friction in dynamic elasticity

被引:29
作者
Ionescu, IR
Nguyen, QL
Wolf, S
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
[2] Univ Grenoble 1, Lab Geophys Interne, F-38041 Grenoble, France
[3] Natl Polytech INst, Ho Shi Minh, Vietnam
关键词
slip-dependent friction; dynamic elasticity; Tresca contact; existence; uniqueness; viscoelasticity; vanishing viscosity;
D O I
10.1016/S0362-546X(02)00302-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamic evolution with frictional contact of an elastic body is considered. In modeling the contact the Tresca model and a slip-dependent friction law are used. The existence of a solution is proved in the two-dimensional case. The uniqueness is proved for the one-dimensional shearing problem. The convergence, for a vanishing viscosity, of the unique solution of the viscoelastic problem to a solution of the elastic problem is obtained. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:375 / 390
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1990, MECH EARTHQUAKES FAU
[2]   Initiation of antiplane shear instability under slip dependent friction [J].
Campillo, M ;
Ionescu, IR .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B9) :20363-20371
[3]  
Cornesch C., 2002, J APPL ANAL, V8, P63
[4]   Fault finiteness and initiation of dynamic shear instability [J].
Dascalu, C ;
Ionescu, IR ;
Campillo, M .
EARTH AND PLANETARY SCIENCE LETTERS, 2000, 177 (3-4) :163-176
[6]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[7]  
Favreau P, 1999, B SEISMOL SOC AM, V89, P1280
[8]   On dynamic sliding with rate- and state-dependent friction laws [J].
Favreau, P ;
Ionescu, IR ;
Campillo, M .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 139 (03) :671-678
[9]  
IONESCU I, 1993, CR ACAD SCI I-MATH, V316, P121
[10]  
Ionescu I. R., 2002, International Journal of Applied Mathematics and Computer Science, V12, P71