Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Quantum percolation transition in three dimensions: Density of states, finite-size scaling, and multifractality [J].
Ujfalusi, Laszlo ;
Varga, Imre .
PHYSICAL REVIEW B, 2014, 90 (17)
[42]   Conformal invariance, multifractality, and finite-size scaling at Anderson localization transitions in two dimensions [J].
Obuse, H. ;
Subramaniam, A. R. ;
Furusaki, A. ;
Gruzberg, I. A. ;
Ludwig, A. W. W. .
PHYSICAL REVIEW B, 2010, 82 (03)
[43]   Main transition in the Pink membrane model: Finite-size scaling and the influence of surface roughness [J].
Sadeghi, Sina ;
Vink, R. L. C. .
PHYSICAL REVIEW E, 2012, 85 (06)
[44]   Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs [J].
Helmuth, Tyler ;
Jenssen, Matthew ;
Perkins, Will .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02) :817-848
[45]   Finite-size scaling at the first-order quantum transitions of quantum Potts chains [J].
Campostrini, Massimo ;
Nespolo, Jacopo ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW E, 2015, 91 (05)
[46]   Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition [J].
Midya, Jiarul ;
Das, Subir K. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (04)
[47]   Finite-Size Scaling for the Baxter-Wu Model Using Block Distribution Functions [J].
Velonakis, Ioannis N. ;
Hadjiagapiou, Ioannis A. .
BRAZILIAN JOURNAL OF PHYSICS, 2018, 48 (04) :354-363
[48]   Thermodynamic instability and first-order phase transition in an ideal Bose gas [J].
Park, Jeong-Hyuck ;
Kim, Sang-Woo .
PHYSICAL REVIEW A, 2010, 81 (06)
[49]   The finite-size effect in thin liquid crystal systems [J].
Sliwa, I. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 498 :116-122
[50]   Evaluation of finite-size effects in cavitation and droplet formation [J].
Wilhelmsen, Oivind ;
Reguera, David .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (06)