Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
[31]   The condensation of ideal Bose gas in a gravitational field [J].
Du, Cong-Fei ;
Li, Hong ;
Lin, Zhen-Quan ;
Kong, Xiang-Mu .
PHYSICA B-CONDENSED MATTER, 2012, 407 (21) :4375-4378
[32]   Anomalous finite-size scaling in higher-order processes with absorbing states [J].
Vezzani, Alessandro ;
Munoz, Miguel A. ;
Burioni, Raffaella .
PHYSICAL REVIEW E, 2023, 107 (01)
[33]   Inverse Volume Scaling of Finite-Size Error in Periodic Coupled Cluster Theory [J].
Xing, Xin ;
Lin, Lin .
PHYSICAL REVIEW X, 2024, 14 (01)
[34]   Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension [J].
Flores-Sola, Emilio ;
Berche, Bertrand ;
Kenna, Ralph ;
Weigel, Martin .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[35]   Thermodynamic properties of a finite Bose gas in a harmonic trap [J].
Wang Jian-Hui ;
Ma Yong-Li .
CHINESE PHYSICS B, 2010, 19 (05) :0505021-0505027
[36]   ON THE FEATURES OF IDEAL BOSE-GAS THERMODYNAMIC PROPERTIES AT A FINITE PARTICLE NUMBER [J].
Bugrij, A. I. ;
Loktev, V. M. .
UKRAINIAN JOURNAL OF PHYSICS, 2022, 67 (04) :235-239
[37]   Thermodynamics of an Ideal Bose Gas with a Finite Number of Particles Confined in a Three-Dimensional Quartic Trap [J].
Wang, Jianhui ;
Zhuang, Bo ;
He, Jizhou .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 170 (1-2) :99-107
[38]   Multiscale theory of finite-size Bose systems: Implications for collective and single-particle excitations [J].
Pankavich, S. ;
Shreif, Z. ;
Chen, Y. ;
Ortoleva, P. .
PHYSICAL REVIEW A, 2009, 79 (01)
[39]   On the finite-size effects in two segregated Bose-Einstein condensates restricted by a hard wall [J].
Quyet, H., V ;
Thu, N., V ;
Tam, D. T. ;
Phat, T. H. .
CONDENSED MATTER PHYSICS, 2019, 22 (01)
[40]   Finite-size scaling analysis of the anisotropic critical behavior of the two-dimensional Ising model under shear [J].
Winter, D. ;
Virnau, P. ;
Horbach, J. ;
Binder, K. .
EPL, 2010, 91 (06)