Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Universal scaling in the statistics and thermodynamics of a Bose-Einstein condensation of an ideal gas in an arbitrary trap [J].
Tarasov, S. V. ;
Kocharovsky, Vl. V. ;
Kocharovsky, V. V. .
PHYSICAL REVIEW A, 2014, 90 (03)
[22]   On the theory of ideal Bose-gas [J].
Bugrij, A., I ;
Loktev, V. M. .
LOW TEMPERATURE PHYSICS, 2021, 47 (02) :116-118
[23]   Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension [J].
Young, A. Peter .
ENTROPY, 2024, 26 (06)
[24]   Extracting critical exponents by finite-size scaling with convolutional neural networks [J].
Li, Zhenyu ;
Luo, Mingxing ;
Wan, Xin .
PHYSICAL REVIEW B, 2019, 99 (07)
[25]   Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model [J].
Hong, Hyunsuk ;
Chate, Hugues ;
Tang, Lei-Han ;
Park, Hyunggyu .
PHYSICAL REVIEW E, 2015, 92 (02)
[26]   Tricriticality and finite-size scaling in the triangular Blume-Capel ferromagnet [J].
Mataragkas, Dimitrios ;
Vasilopoulos, Alexandros ;
Fytas, Nikolaos G. ;
Kim, Dong-Hee .
PHYSICAL REVIEW RESEARCH, 2025, 7 (01)
[27]   Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena [J].
Ardourel, Vincent ;
Bangu, Sorin .
STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2023, 100 :99-106
[28]   Phase transition and finite-size scaling in the vertex-cover problem [J].
Hartmann, AK ;
Barthel, W ;
Weigt, M .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) :234-237
[29]   Trap-size scaling of finite Bose systems within an exact canonical ensemble [J].
Wang, Jian-hui ;
Tang, Hui-yi ;
Ma, Yong-li .
ANNALS OF PHYSICS, 2011, 326 (03) :634-644
[30]   Thermodynamics of the noninteracting Bose gas in a two-dimensional box [J].
Li, Heqiu ;
Guo, Qiujiang ;
Jiang, Ji ;
Johnston, D. C. .
PHYSICAL REVIEW E, 2015, 92 (06)