Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On the theory of ideal Bose-gas
    Bugrij, A., I
    Loktev, V. M.
    LOW TEMPERATURE PHYSICS, 2021, 47 (02) : 116 - 118
  • [22] Shape dependence and anisotropic finite-size scaling of the phase coherence of three-dimensional Bose-Einstein-condensed gases
    Ceccarelli, Giacomo
    Delfino, Francesco
    Mesiti, Michele
    Vicari, Ettore
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [23] Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension
    Young, A. Peter
    ENTROPY, 2024, 26 (06)
  • [24] Extracting critical exponents by finite-size scaling with convolutional neural networks
    Li, Zhenyu
    Luo, Mingxing
    Wan, Xin
    PHYSICAL REVIEW B, 2019, 99 (07)
  • [25] Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena
    Ardourel, Vincent
    Bangu, Sorin
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2023, 100 : 99 - 106
  • [26] Phase transition and finite-size scaling in the vertex-cover problem
    Hartmann, AK
    Barthel, W
    Weigt, M
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) : 234 - 237
  • [27] Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model
    Hong, Hyunsuk
    Chate, Hugues
    Tang, Lei-Han
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2015, 92 (02)
  • [28] Trap-size scaling of finite Bose systems within an exact canonical ensemble
    Wang, Jian-hui
    Tang, Hui-yi
    Ma, Yong-li
    ANNALS OF PHYSICS, 2011, 326 (03) : 634 - 644
  • [29] Tricriticality and finite-size scaling in the triangular Blume-Capel ferromagnet
    Mataragkas, Dimitrios
    Vasilopoulos, Alexandros
    Fytas, Nikolaos G.
    Kim, Dong-Hee
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [30] Thermodynamics of the noninteracting Bose gas in a two-dimensional box
    Li, Heqiu
    Guo, Qiujiang
    Jiang, Ji
    Johnston, D. C.
    PHYSICAL REVIEW E, 2015, 92 (06):