Microcanonical finite-size scaling of an ideal Bose gas in a box

被引:0
作者
Wang, Honghui [1 ]
He, Jizhou [1 ]
Wang, Jianhui [1 ,2 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
EINSTEIN CONDENSATION; CRITICAL-TEMPERATURE; PHASE-TRANSITIONS; PARTICLE NUMBER; SODIUM ATOMS; FLUCTUATIONS; SYSTEMS;
D O I
10.1140/epjd/e2016-70546-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive an exact recursive scheme to determine exactly the microcanonical partition function of a finite Bose system. Such a recursive approach is identical to that previously obtained within the context of counting statistics. Within the exact microcanonical ensemble, we study microcanonical finite-size scaling behaviors of condensate fraction and specific heat around the critical energy epsilon(c) for the finite ideal Bose system. We show that the microcanonical scaling functions governing the various critical behaviors are universal in the ideal Bose-Einstein condensates.
引用
收藏
页数:5
相关论文
共 50 条
[11]   Microcanonical Entropy, Partitions of a Natural Number into Squares and the Bose-Einstein Gas in a Box [J].
De Gregorio, Paolo ;
Rondoni, Lamberto .
ENTROPY, 2018, 20 (09)
[12]   Thermal fluctuation effects on finite-size scaling of synchronization [J].
Son, Seung-Woo ;
Hong, Hyunsuk .
PHYSICAL REVIEW E, 2010, 81 (06)
[13]   Escape and finite-size scaling in diffusion-controlled annihilation [J].
Ben-Naim, E. ;
Krapivsky, P. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (50)
[14]   Finite-size excess-entropy scaling for simple liquids [J].
Sevilla, Mauricio ;
Banerjee, Atreyee ;
Cortes-Huerto, Robinson .
JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (20)
[15]   Finite-Size Scaling at First-Order Quantum Transitions [J].
Campostrini, Massimo ;
Nespolo, Jacopo ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[16]   Finite-size scaling of entanglement entropy at the Anderson transition with interactions [J].
Zhao, An ;
Chu, Rui-Lin ;
Shen, Shun-Qing .
PHYSICAL REVIEW B, 2013, 87 (20)
[17]   Finite-size behavior in phase transitions and scaling in the progress of an epidemic [J].
Das, Subir K. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 646
[18]   Universal finite-size scaling for percolation theory in high dimensions [J].
Kenna, Ralph ;
Berche, Bertrand .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)
[19]   Phase transitions in ideal and weakly interacting Bose gases with a finite number of particles confined in a box [J].
Wang, Jian-hui ;
Ma, Yong-li .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (24)
[20]   Shape dependence and anisotropic finite-size scaling of the phase coherence of three-dimensional Bose-Einstein-condensed gases [J].
Ceccarelli, Giacomo ;
Delfino, Francesco ;
Mesiti, Michele ;
Vicari, Ettore .
PHYSICAL REVIEW A, 2016, 94 (05)