Estimates for the lowest eigenvalue of magnetic Laplacians

被引:16
作者
Ekholm, Tomas [1 ]
Kovarik, Hynek [2 ]
Portmann, Fabian [3 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
[2] Univ Brescia, I-25121 Brescia, Italy
[3] Univ Copenhagen, DK-1168 Copenhagen, Denmark
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
Magnetic fields; Magnetic Dirichlet Laplacian; Eigenvalues; SCHRODINGER OPERATOR; FIELD; INEQUALITIES; ASYMPTOTICS; STATE;
D O I
10.1016/j.jmaa.2016.02.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant magnetic field. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:330 / 346
页数:17
相关论文
共 26 条
[21]   Eigenvalue problems of Ginzburg-Landau operator in bounded domains [J].
Lu, KN ;
Pan, XB .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :2647-2670
[22]   Sharp Asymptotics for the Neumann Laplacian with Variable Magnetic Field: Case of Dimension 2 [J].
Raymond, Nicolas .
ANNALES HENRI POINCARE, 2009, 10 (01) :95-122
[23]  
Simon B., 1983, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V38, P295
[24]  
Weidl T., 1999, Oper. Theory Adv. Appl, V110, P345, DOI DOI 10.1002/ADMA.201401595
[25]  
Weidl Timo, 1998, MAZYA ANNIVERSARY CO, V2
[26]  
[No title captured]