Estimates for the lowest eigenvalue of magnetic Laplacians

被引:16
作者
Ekholm, Tomas [1 ]
Kovarik, Hynek [2 ]
Portmann, Fabian [3 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
[2] Univ Brescia, I-25121 Brescia, Italy
[3] Univ Copenhagen, DK-1168 Copenhagen, Denmark
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
Magnetic fields; Magnetic Dirichlet Laplacian; Eigenvalues; SCHRODINGER OPERATOR; FIELD; INEQUALITIES; ASYMPTOTICS; STATE;
D O I
10.1016/j.jmaa.2016.02.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant magnetic field. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:330 / 346
页数:17
相关论文
共 26 条
[1]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[2]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[3]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[4]   Generalized Hardy inequality for the magnetic Dirichlet forms [J].
Balinsky, A ;
Laptev, A ;
Sobolev, AV .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :507-521
[5]  
Bonnaillie V, 2005, ASYMPTOTIC ANAL, V41, P215
[6]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[7]   Stability of the magnetic Schrodinger operator in a waveguide [J].
Ekholm, T ;
Kovarík, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) :539-565
[8]   Diamagnetic behavior of sums Dirichlet eigenvalues [J].
Erdös, L ;
Loss, M ;
Vougalter, V .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :891-+
[9]   Rayleigh-type isoperimetric inequality with a homogeneous magnetic field [J].
Erdos, L .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :283-292
[10]   Lifschitz tail in a magnetic field: the nonclassical regime [J].
Erdos, L .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :321-371