Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping

被引:25
作者
Covarrubias-Pazaran, Giovanny [1 ]
Diaz-Garcia, Luis [1 ,3 ]
Schlautman, Brandon [1 ]
Deutsch, Joseph [4 ]
Salazar, Walter [1 ]
Hernandez-Ochoa, Miguel [1 ]
Grygleski, Edward [5 ]
Steffan, Shawn [2 ]
Iorizzo, Massimo [6 ]
Polashock, James [7 ]
Vorsa, Nicholi [8 ]
Zalapa, Juan [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Hort, 1575 Linden Dr, Madison, WI 53706 USA
[2] Univ Wisconsin, USDA ARS, Vegetable Crops Res Unit, Madison, WI 53706 USA
[3] Inst Nacl Invest Agr Forestales & Pecuarias, Aguascalientes, Mexico
[4] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[5] Valley Corp, Tomah, WI USA
[6] N Carolina State Univ, Plants Human Hlth Inst, Dept Hort Sci, Kannapolis, NC USA
[7] USDA ARS, Genet Improvement Fruits & Vegetables Lab, Chatsworth, NJ USA
[8] Rutgers State Univ, Blueberry & Cranberry Res & Extens Ctr, Chatsworth, NJ USA
来源
BMC GENOMICS | 2016年 / 17卷
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Genotyping by sequencing; Imputation; Vaccinium macrocarpon; Pseudo-testcross; Linkage disequilibrium; Segregation distortion; Synteny; VACCINIUM-MACROCARPON AIT; PSEUDO-TESTCROSS STRATEGY; QUANTITATIVE TRAIT LOCI; ULTRA-HIGH-DENSITY; EST-SSR MARKERS; GENETIC-MAP; COMPLEX TRAITS; WHOLE-GENOME; RUBUS-IDAEUS; CONSTRUCTION;
D O I
10.1186/s12864-016-2802-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (similar to 200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. Results: We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for similar to 13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. Conclusions: GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).
引用
收藏
页数:16
相关论文
共 50 条
[21]   Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data [J].
Karimi, Karim ;
Farid, A. Hossain ;
Sargolzaei, Mehdi ;
Myles, Sean ;
Miar, Younes .
FRONTIERS IN GENETICS, 2020, 11
[22]   Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations [J].
Spindel, Jennifer ;
Wright, Mark ;
Chen, Charles ;
Cobb, Joshua ;
Gage, Joseph ;
Harrington, Sandra ;
Lorieux, Mathias ;
Ahmadi, Nourollah ;
McCouch, Susan .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (11) :2699-2716
[23]   High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology [J].
Su, Chengfu ;
Wang, Wei ;
Gong, Shunliang ;
Zuo, Jinghui ;
Li, Shujiang ;
Xu, Shizhong .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[24]   Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection [J].
Schlautman, Brandon ;
Covarrubias-Pazaran, Giovanny ;
Diaz-Garcia, Luis A. ;
Johnson-Cicalese, Jennifer ;
Iorrizo, Massimo ;
Rodriguez-Bonilla, Lorraine ;
Bougie, Tierney ;
Bougie, Tiffany ;
Wiesman, Eric ;
Steffan, Shawn ;
Polashock, James ;
Vorsa, Nicholi ;
Zalapa, Juan .
MOLECULAR BREEDING, 2015, 35 (08)
[25]   Development of a High-Density Linkage Map and Tagging Leaf Spot Resistance in Pearl Millet Using Genotyping-by-Sequencing Markers [J].
Punnuri, Somashekhar M. ;
Wallace, Jason G. ;
Knoll, Joseph E. ;
Hyma, Katie E. ;
Mitchell, Sharon E. ;
Buckler, Edward S. ;
Varshney, Rajeev K. ;
Singh, Bharat P. .
PLANT GENOME, 2016, 9 (02)
[26]   Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology [J].
Zhang, Zhong ;
Wei, Tianjun ;
Zhong, Ying ;
Li, Xingang ;
Huang, Jian .
TREE GENETICS & GENOMES, 2016, 12 (04)
[27]   High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination [J].
Chancerel, Emilie ;
Lamy, Jean-Baptiste ;
Lesur, Isabelle ;
Noirot, Celine ;
Klopp, Christophe ;
Ehrenmann, Francois ;
Boury, Christophe ;
Le Provost, Gregoire ;
Label, Philippe ;
Lalanne, Celine ;
Leger, Valerie ;
Salin, Franck ;
Gion, Jean-Marc ;
Plomion, Christophe .
BMC BIOLOGY, 2013, 11
[28]   A high-density genetic linkage map for Chinese perch (Siniperca chuatsi) using 2.3K genotyping-by-sequencing SNPs [J].
Guo, Wenjie ;
He, Shan ;
Liang, Xufang ;
Tian, Changxu ;
Dou, Yaqi ;
Lv, Liyuan .
ANIMAL GENETICS, 2021, 52 (03) :311-320
[29]   Exploring a Nonmodel Teleost Genome Through RAD Sequencing-Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis [J].
Manousaki, Tereza ;
Tsakogiannis, Alexandros ;
Taggart, John B. ;
Palaiokostas, Christos ;
Tsaparis, Dimitris ;
Lagnel, Jacques ;
Chatziplis, Dimitrios ;
Magoulas, Antonios ;
Papandroulakis, Nikos ;
Mylonas, Constantinos C. ;
Tsigenopoulos, Costas S. .
G3-GENES GENOMES GENETICS, 2016, 6 (03) :509-519
[30]   Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping [J].
Patil, Gunvant ;
Vuong, Tri D. ;
Kale, Sandip ;
Valliyodan, Babu ;
Deshmukh, Rupesh ;
Zhu, Chengsong ;
Wu, Xiaolei ;
Bai, Yonghe ;
Yungbluth, Dennis ;
Lu, Fang ;
Kumpatla, Siva ;
Shannon, J. Grover ;
Varshney, Rajeev K. ;
Nguyen, Henry T. .
PLANT BIOTECHNOLOGY JOURNAL, 2018, 16 (11) :1939-1953