Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19

被引:111
作者
Subudhi, Sonu [1 ,2 ]
Verma, Ashish [2 ,3 ]
Patel, Ankit B. [2 ,3 ]
Hardin, C. Corey [2 ,4 ]
Khandekar, Melin J. [2 ,5 ]
Lee, Hang [2 ,6 ]
McEvoy, Dustin [7 ]
Stylianopoulos, Triantafyllos [8 ]
Munn, Lance L. [2 ,9 ]
Dutta, Sayon [2 ,7 ,10 ]
Jain, Rakesh K. [2 ,9 ]
机构
[1] Massachusetts Gen Hosp, Dept Med, Gastroenterol Div, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Renal Div, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Dept Pulm & Crit Care Med, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Biostat Ctr, Boston, MA 02114 USA
[7] Mass Gen Brigham Digital Hlth eCare, Somerville, MA 02145 USA
[8] Univ Cyprus, Dept Mech & Mfg Engn, Canc Biophys Lab, Nicosia, Cyprus
[9] Massachusetts Gen Hosp, Dept Radiat Oncol, Edwin L Steele Labs, Boston, MA 02114 USA
[10] Massachusetts Gen Hosp, Dept Emergency Med, Boston, MA 02114 USA
关键词
CALCITONIN-I GENE; PROCALCITONIN; ASSOCIATION; EXPRESSION;
D O I
10.1038/s41746-021-00456-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
As predicting the trajectory of COVID-19 is challenging, machine learning models could assist physicians in identifying high-risk individuals. This study compares the performance of 18 machine learning algorithms for predicting ICU admission and mortality among COVID-19 patients. Using COVID-19 patient data from the Mass General Brigham (MGB) Healthcare database, we developed and internally validated models using patients presenting to the Emergency Department (ED) between March-April 2020 (n = 3597) and further validated them using temporally distinct individuals who presented to the ED between May-August 2020 (n = 1711). We show that ensemble-based models perform better than other model types at predicting both 5-day ICU admission and 28-day mortality from COVID-19. CRP, LDH, and O-2 saturation were important for ICU admission models whereas eGFR <60 ml/min/1.73 m(2), and neutrophil and lymphocyte percentages were the most important variables for predicting mortality. Implementing such models could help in clinical decision-making for future infectious disease outbreaks including COVID-19.
引用
收藏
页数:7
相关论文
共 48 条
[1]  
Anesi G. L., 2021, ANN INTERN MED, V19, pM20
[2]  
[Anonymous], 2017, P ADV NEUR INF PROC
[3]  
[Anonymous], ery and Data Mining, DOI DOI 10.1145/2939672.2939785
[4]   Ventilator Triage Policies During the COVID-19 Pandemic at US Hospitals Associated With Members of the Association of Bioethics Program Directors [J].
Antommaria, Armand H. Matheny ;
Gibb, Tyler S. ;
McGuire, Amy L. ;
Wolpe, Paul Root ;
Wynia, Matthew K. ;
Applewhite, Megan K. ;
Caplan, Arthur ;
Diekema, Douglas S. ;
Hester, D. Micah ;
Lehmann, Lisa Soleymani ;
McLeod-Sordjan, Renee ;
Schiff, Tamar ;
Tabor, Holly K. ;
Wieten, Sarah E. ;
Eberl, Jason T. .
ANNALS OF INTERNAL MEDICINE, 2020, 173 (03) :188-+
[5]  
Beigel JH, 2020, NEW ENGL J MED, V383, P1813, DOI [10.1056/NEJMc2022236, 10.1056/NEJMoa2007764]
[6]   Nearest neighbor imputation algorithms: a critical evaluation [J].
Beretta, Lorenzo ;
Santaniello, Alessandro .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
[7]   A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation [J].
Bolourani, Siavash ;
Brenner, Max ;
Wang, Ping ;
McGinn, Thomas ;
Hirsch, Jamie S. ;
Barnaby, Douglas ;
Zanos, Theodoros P. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (02)
[8]   Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial [J].
Burdick, Hoyt ;
Lam, Carson ;
Mataraso, Samson ;
Siefkas, Anna ;
Braden, Gregory ;
Dellinger, R. Phillip ;
McCoy, Andrea ;
Vincent, Jean-Louis ;
Green-Saxena, Abigail ;
Barnes, Gina ;
Hoffman, Jana ;
Calvert, Jacob ;
Pellegrini, Emily ;
Das, Ritankar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 124
[9]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[10]  
Chawla NV, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P853, DOI 10.1007/0-387-25465-X_40