Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19

被引:96
作者
Subudhi, Sonu [1 ,2 ]
Verma, Ashish [2 ,3 ]
Patel, Ankit B. [2 ,3 ]
Hardin, C. Corey [2 ,4 ]
Khandekar, Melin J. [2 ,5 ]
Lee, Hang [2 ,6 ]
McEvoy, Dustin [7 ]
Stylianopoulos, Triantafyllos [8 ]
Munn, Lance L. [2 ,9 ]
Dutta, Sayon [2 ,7 ,10 ]
Jain, Rakesh K. [2 ,9 ]
机构
[1] Massachusetts Gen Hosp, Dept Med, Gastroenterol Div, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Renal Div, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Dept Pulm & Crit Care Med, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Biostat Ctr, Boston, MA 02114 USA
[7] Mass Gen Brigham Digital Hlth eCare, Somerville, MA 02145 USA
[8] Univ Cyprus, Dept Mech & Mfg Engn, Canc Biophys Lab, Nicosia, Cyprus
[9] Massachusetts Gen Hosp, Dept Radiat Oncol, Edwin L Steele Labs, Boston, MA 02114 USA
[10] Massachusetts Gen Hosp, Dept Emergency Med, Boston, MA 02114 USA
关键词
CALCITONIN-I GENE; PROCALCITONIN; ASSOCIATION; EXPRESSION;
D O I
10.1038/s41746-021-00456-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
As predicting the trajectory of COVID-19 is challenging, machine learning models could assist physicians in identifying high-risk individuals. This study compares the performance of 18 machine learning algorithms for predicting ICU admission and mortality among COVID-19 patients. Using COVID-19 patient data from the Mass General Brigham (MGB) Healthcare database, we developed and internally validated models using patients presenting to the Emergency Department (ED) between March-April 2020 (n = 3597) and further validated them using temporally distinct individuals who presented to the ED between May-August 2020 (n = 1711). We show that ensemble-based models perform better than other model types at predicting both 5-day ICU admission and 28-day mortality from COVID-19. CRP, LDH, and O-2 saturation were important for ICU admission models whereas eGFR <60 ml/min/1.73 m(2), and neutrophil and lymphocyte percentages were the most important variables for predicting mortality. Implementing such models could help in clinical decision-making for future infectious disease outbreaks including COVID-19.
引用
收藏
页数:7
相关论文
共 48 条
  • [1] Anesi G. L., 2021, ANN INTERN MED, V19, pM20
  • [2] [Anonymous], 2017, P 31 INT C NEURAL IN
  • [3] Ventilator Triage Policies During the COVID-19 Pandemic at US Hospitals Associated With Members of the Association of Bioethics Program Directors
    Antommaria, Armand H. Matheny
    Gibb, Tyler S.
    McGuire, Amy L.
    Wolpe, Paul Root
    Wynia, Matthew K.
    Applewhite, Megan K.
    Caplan, Arthur
    Diekema, Douglas S.
    Hester, D. Micah
    Lehmann, Lisa Soleymani
    McLeod-Sordjan, Renee
    Schiff, Tamar
    Tabor, Holly K.
    Wieten, Sarah E.
    Eberl, Jason T.
    [J]. ANNALS OF INTERNAL MEDICINE, 2020, 173 (03) : 188 - +
  • [4] Remdesivir for the Treatment of Covid-19-Final Report
    Beigel, John H.
    Tomashek, Kay M.
    Dodd, Lori E.
    Mehta, Aneesh K.
    Zingman, Barry S.
    Kalil, Andre C.
    Hohmann, Elizabeth
    Chu, Helen Y.
    Luetkemeyer, Annie
    Kline, Susan
    de Castilla, Diego Lopez
    Finberg, Robert W.
    Dierberg, Kerry
    Tapson, Victor
    Hsieh, Lanny
    Patterson, Thomas F.
    Paredes, Roger
    Sweeney, Daniel A.
    Short, William R.
    Touloumi, Giota
    Lye, David Chien
    Ohmagari, Norio
    Oh, Myoung-don
    Ruiz-Palacios, Guillermo M.
    Benfield, Thomas
    Faetkenheuer, Gerd
    Kortepeter, Mark G.
    Atmar, Robert L.
    Creech, C. Buddy
    Lundgren, Jens
    Babiker, Abdel G.
    Pett, Sarah
    Neaton, James D.
    Burgess, Timothy H.
    Bonnett, Tyler
    Green, Michelle
    Makowski, Mat
    Osinusi, Anu
    Nayak, Seema
    Lane, H. Clifford
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (19) : 1813 - 1826
  • [5] Nearest neighbor imputation algorithms: a critical evaluation
    Beretta, Lorenzo
    Santaniello, Alessandro
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
  • [6] A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation
    Bolourani, Siavash
    Brenner, Max
    Wang, Ping
    McGinn, Thomas
    Hirsch, Jamie S.
    Barnaby, Douglas
    Zanos, Theodoros P.
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (02)
  • [7] Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial
    Burdick, Hoyt
    Lam, Carson
    Mataraso, Samson
    Siefkas, Anna
    Braden, Gregory
    Dellinger, R. Phillip
    McCoy, Andrea
    Vincent, Jean-Louis
    Green-Saxena, Abigail
    Barnes, Gina
    Hoffman, Jana
    Calvert, Jacob
    Pellegrini, Emily
    Das, Ritankar
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 124
  • [8] A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION
    CHARLSON, ME
    POMPEI, P
    ALES, KL
    MACKENZIE, CR
    [J]. JOURNAL OF CHRONIC DISEASES, 1987, 40 (05): : 373 - 383
  • [9] Chawla NV, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P853, DOI 10.1007/0-387-25465-X_40
  • [10] Assessment of Hypokalemia and Clinical Characteristics in Patients With Coronavirus Disease 2019 in Wenzhou, China
    Chen, Dong
    Li, Xiaokun
    Song, Qifa
    Hu, Chenchan
    Su, Feifei
    Dai, Jianyi
    Ye, Yinghai
    Huang, Jianping
    Zhang, Xiaoming
    [J]. JAMA NETWORK OPEN, 2020, 3 (06)