Banach frames for α-modulation spaces

被引:32
作者
Fornasier, Massimo
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
[2] Univ Vienna, Dept Math, NuHAG, A-1090 Vienna, Austria
关键词
banach frames; Gabor analysis; localization of frames; alpha-modulation spaces; wavelets;
D O I
10.1016/j.acha.2006.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the characterization of a-modulation spaces by Banach frames, i.e., stable and redundant nonorthogonal expansions, constituted of functions obtained by a suitable combination of ' translation, modulation and dilation of a mother atom. In particular, the parameter alpha is an element of [0, 1] governs the dependence of the dilation factor on the frequency. The result is achieved by exploiting intrinsic properties of localization of such frames. The well-known Gabor and wavelet frames arise as special cases (alpha = 0) and limiting case (alpha -> 1), to characterize respectively modulation and Besov spaces. This intermediate theory contributes to a further answer to the theoretical need of a common interpretation and framework between Gabor and wavelet theory and to the construction of new tools for applications in time-frequency analysis, signal processing, and numerical analysis. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:157 / 175
页数:19
相关论文
共 53 条
[1]  
ALI ST, 2000, COHERENT STATE WAVEL
[2]  
[Anonymous], 1989, ANN MATH STUD
[3]   Nonlinear approximation in α-modulation spaces [J].
Borup, L ;
Nielsen, M .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) :101-120
[4]  
Borup L., 2004, J FUNCT SPACES APPL, V2, P107
[5]  
BROS J, 1975, SEMINAIRE GOULAOUIC
[6]  
CHRISTENSEN O, 2003, MATH NACHR
[7]   Localization of frames II [J].
Cordero, E ;
Gröchenig, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :29-47
[8]  
Cordoba A., 1978, Comm. Part. Differ. Equ, V3, P979, DOI DOI 10.1080/03605307808820083
[9]   Weighted Coorbit spaces and Banach frames on homogeneous spaees [J].
Dahlke, S ;
Steidl, G ;
Teschke, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (05) :507-539
[10]   Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere [J].
Dahlke, S ;
Steidl, G ;
Teschke, G .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (1-2) :147-180