Detection and validation of clusters of polynomial zeros

被引:40
作者
Hribernig, V [1 ]
Stetter, HJ [1 ]
机构
[1] Vienna Tech Univ, Inst Angew & Numer Math, A-1040 Vienna, Austria
关键词
D O I
10.1006/jsco.1997.0160
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the task of partitioning the zeros of a real or complex polynomial into clusters and of determining their location and multiplicity for polynomials with coefficients of limited accuracy. We derive computational procedures for the solution of this task which combine symbolic computation with floating-point arithmetic. The validation of the existence of m zeros in a specified small disk is described. (C) 1997 Academic Press Limited.
引用
收藏
页码:667 / 681
页数:15
相关论文
共 16 条
[1]  
DAVENPORT J, 1993, COMPUTER ALGEBRA SYS
[2]  
HRIBERNIG V., 1994, THESIS TU VIENNA
[3]   The mathematical basis and a prototype implementation of a new polynomial rootfinder with quadratic convergence [J].
Hull, TE ;
Mathon, R .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (03) :261-280
[4]  
KAHAN W, 1972, 6 CS U CAL
[5]  
KOHTREFETHEN LN, 1994, NUMER MATH, V68, P403
[6]   MULTIVARIATE POLYNOMIAL EQUATIONS WITH MULTIPLE ZEROS SOLVED BY MATRIX EIGENPROBLEMS [J].
MOLLER, HM ;
STETTER, HJ .
NUMERISCHE MATHEMATIK, 1995, 70 (03) :311-329
[7]  
MOSIER RG, 1986, MATH COMPUT, V47, P265, DOI 10.1090/S0025-5718-1986-0842134-4
[8]   AN EXISTENCE TEST FOR ROOT CLUSTERS AND MULTIPLE ROOTS [J].
NEUMAIER, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (06) :256-257
[9]  
Neumaier A., 1990, INTERVAL METHODS SYS
[10]  
RHAMAN AA, 1989, THESIS U BRADFORD