Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

被引:152
作者
Janhunen, P. [1 ]
Sandroos, A. [1 ]
机构
[1] Univ Helsinki, Dept Phys Sci, FIN-00014 Helsinki, Finland
关键词
general or miscellaneous; instruments useful in three or more fields; new fields; not classifiable under other headings; techniques applicable in three or more fields;
D O I
10.5194/angeo-25-755-2007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use I-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at I AU the force per unit length is (5 +/- 1) x 10(-8) N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML) theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s) could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 12 条
[1]   PROBE THEORY - THE ORBITAL MOTION APPROACH [J].
ALLEN, JE .
PHYSICA SCRIPTA, 1992, 45 (05) :497-503
[2]  
Birdsall C. K., 1991, PLASMA PHYS VIA COMP
[3]  
Hoyt R.P., 2001, U.S. Patent, Patent No. 6286788
[4]   Electric sail for spacecraft propulsion [J].
Janhunen, P .
JOURNAL OF PROPULSION AND POWER, 2004, 20 (04) :763-764
[5]   Generation of Bernstein waves by ion shell distributions in the auroral region [J].
Janhunen, P ;
Olsson, A ;
Vaivads, A ;
Peterson, WK .
ANNALES GEOPHYSICAE, 2003, 21 (04) :881-891
[6]  
Kivelson M. G., 1995, Introduction to Space Physics
[7]   The theory of collectors in gaseous discharges [J].
Mott-Smth, HM ;
Langmuir, I .
PHYSICAL REVIEW, 1926, 28 (04) :0727-0763
[8]   AN EMPIRICAL POLYTROPE LAW FOR SOLAR-WIND THERMAL ELECTRONS BETWEEN 0.45 AND 4.76 AU - VOYAGER 2 AND MARINER 10 [J].
SITTLER, EC ;
SCUDDER, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (NA10) :5131-5137
[9]   SOLAR-WIND FLOW ABOUT THE TERRESTRIAL PLANETS .1. MODELING BOW SHOCK POSITION AND SHAPE [J].
SLAVIN, JA ;
HOLZER, RE .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA13) :1401-1418
[10]   AN OBJECT-ORIENTED ELECTROMAGNETIC PIC CODE [J].
VERBONCOEUR, JP ;
LANGDON, AB ;
GLADD, NT .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 87 (1-2) :199-211