Optimal Control of a SEIR Model with Mixed Constraints and L1 Cost

被引:15
作者
de Pinho, Maria do Rosario [1 ]
Kornienko, Igor [1 ]
Maurer, Helmut
机构
[1] Univ Porto, Fac Engn, ISR, P-4100 Oporto, Portugal
来源
CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL | 2015年 / 321卷
关键词
optimal control; epidemiology; mixed constraints; numerical solutions; bang-bang control;
D O I
10.1007/978-3-319-10380-8_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal control can help to determine vaccination policies for infectious diseases. For diseases transmitted horizontally, SEIR compartment models have been used. Most of the literature on SEIR models deals with cost functions that are quadratic with respect to the control variable, the rate of vaccination. Here, we propose the introduction of a cost of L-1 type which is linear with respect to the control variable. Our starting point is the recent work [1], where the number of vaccines at each time is assumed to be limited. This yields an optimal control problem with a mixed control-state constraint. We discuss the necessary optimality conditions of the Maximum Principle and present numerical solutions that precisely satisfy the necessary conditions.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 2013, FUNCTIONAL ANAL CALC
[2]  
Biswas M.H.A., 2014, MATH BIOSCI IN PRESS
[3]  
Brauer F., 2011, MATH MODELS POPULATI, DOI DOI 10.1007/978-1-4614-1686-9
[4]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[5]   OPTIMAL CONTROL PROBLEMS WITH MIXED CONSTRAINTS [J].
Clarke, Francis ;
de Pinho, M. R. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (07) :4500-4524
[6]  
Falugi P., 2010, IMPERIAL COLL LONDON
[7]  
Fourer R., 1993, AMPL: A Modeling Language for Mathematical Programming
[8]  
Hestenes M.R., 1980, Calculus of Variations and Optimal Control Theory
[9]  
Hethcote H. W., 2008, Mathematical Understanding of Infectious Disease Dynamics, V16, P1
[10]   2ND-ORDER SUFFICIENT CONDITIONS FOR CONTROL-PROBLEMS WITH MIXED CONTROL-STATE CONSTRAINTS [J].
MAURER, H ;
PICKENHAIN, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 86 (03) :649-667