Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites

被引:36
作者
Yang, Ping [1 ]
You, Xin [1 ]
Yi, Jianhong [1 ]
Fang, Dong [1 ]
Bao, Rui [1 ]
Shen, Tao [1 ]
Liu, Yichun [1 ]
Tao, Jingmei [1 ]
Li, Caiju [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-matrix composites; Carbon nanotubes; Electrical properties; METAL COMPOSITES; RESISTIVITY; NANOCOMPOSITES;
D O I
10.1016/j.jallcom.2018.04.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, effect of dispersion state of carbon nanotubes (CNTs) on electrical conductivity of copper (Cu)-matrix composites was investigated. While, it is interestingly found that composite with homo-geneous dispersion CNTs has the lowest electrical conductivity (90.47 +/- 0.34 IACS% (International Annealed Copper Standard)) and that one with aggregation CNTs has the best conductivity (93.45 +/- 0.17 IACS%). This phenomenon was attributed to interconnected conductive networks of Cu damaged by adding dispersed CNTs through interface scattering between CNTs and Cu. Thus, it can be concluded that the dispersion of CNTs is not the key point to obtain high electrical conductivity of CNT/Cu composites. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 10 条
[1]   Carbon nanotube reinforced metal matrix composites - a review [J].
Bakshi, S. R. ;
Lahiri, D. ;
Agarwal, A. .
INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) :41-64
[2]   Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites [J].
Cho, Seungchan ;
Kikuchi, Keiko ;
Miyazaki, Takamichi ;
Takagi, Kenta ;
Kawasaki, Akira ;
Tsukada, Takayuki .
SCRIPTA MATERIALIA, 2010, 63 (04) :375-378
[3]   Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites [J].
Feng, Chuang ;
Jiang, Liying .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 47 :143-149
[4]   Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? [J].
Hjortstam, O ;
Isberg, P ;
Söderholm, S ;
Dai, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1175-1179
[5]   Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites [J].
Kim, YJ ;
Shin, TS ;
Choi, HD ;
Kwon, JH ;
Chung, YC ;
Yoon, HG .
CARBON, 2005, 43 (01) :23-30
[6]   On thermal and electrical properties of multiwalled carbon nanotubes/copper matrix nanocomposites [J].
Koppad, Praveennath G. ;
Ram, H. R. Aniruddha ;
Ramesh, C. S. ;
Kashyap, K. T. ;
Koppad, Ravikiran G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 580 :527-532
[7]   Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites [J].
Park, Kwang Seok ;
Youn, Jae Ryoun .
CARBON, 2012, 50 (06) :2322-2330
[8]   Modeling the electrical resistivity of deformation processed metal-metal composites [J].
Tian, Liang ;
Anderson, Iver ;
Riedemann, Trevor ;
Russell, Alan .
ACTA MATERIALIA, 2014, 77 :151-161
[9]   Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites [J].
Uddin, Sheikh M. ;
Mahmud, Tanvir ;
Wolf, Christoph ;
Glanz, Carsten ;
Kolaric, Ivica ;
Volkmer, Christoph ;
Hoeller, Helmut ;
Wienecke, Ulrich ;
Roth, Siegmar ;
Fecht, Hans-Joerg .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (16) :2253-2257
[10]   Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties [J].
Zhao, Shan ;
Zheng, Zhong ;
Huang, Zixin ;
Dong, Shijie ;
Luo, Ping ;
Zhang, Zhuang ;
Wang, Yaowei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 675 :82-91