In situ TEM investigations of the microstructural changes and radiation tolerance in SiC nanowhiskers irradiated with He ions at high temperatures

被引:12
作者
Aradi, E. [1 ,2 ]
Lewis-Fell, J. [1 ]
Greaves, G. [1 ]
Donnelly, S. E. [1 ]
Hinks, J. A. [1 ]
机构
[1] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
[2] Univ Manchester, Sch Mech Aeronaut & Chem Engn, Oxford Rd, Manchester M13 3PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Silicon carbide; Nanowhiskers; Nanoporous; Ion irradiation; In-situ TEM; Radiation damage; Radiation tolerance; ELECTRON-DIFFRACTION; FUSION POWER; HEAVY-ION; HELIUM; EVOLUTION; BUBBLES; SILICON; ENERGY; DIFFUSION; PLATELETS;
D O I
10.1016/j.actamat.2021.116820
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using in-situ transmission electron microscopy (TEM) with ion irradiation, we investigated the microstructural changes in silicon carbide nanowhiskers (SiC NWs) which were used as a model system for nanoporous SiC. Irradiations were carried out using 6 keV He ions at temperatures between 500 and 1000 degrees C and doses up to 20 dpa. These results are compared with the irradiation effects in SiC thin foils under the same conditions to establish differences in their response to radiation damage. The irradiation temperature played a significant role in the evolution of different microstructures; at 500 degrees C, small defect clusters were observed in the NWs together with a segregation of carbon at the surface of the NWs mapped using energy-filtered TEM (EFTEM). At 800 degrees C, small He bubbles (2-4 nm in diameter) were observed in the NW matrix while He platelets and bubble discs formed in the foils. At 1000 degrees C, several changes were observed in the NWs including bubbles at twin boundaries, voids and oxygen-rich precipitates. The large surface area to volume ratio enhances defect recombination supressing the defect density in the SiC NWs compared to the foils indicating high radiation tolerance; however, elemental segregation and precipitation may limit its application in advanced nuclear reactors. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 64 条
  • [1] Controlling Radiation Damage
    Ackland, Graeme
    [J]. SCIENCE, 2010, 327 (5973) : 1587 - 1588
  • [2] [Anonymous], NUCL INSTRUMENTS MET
  • [3] Low-temperature investigations of ion-induced amorphisation in silicon carbide nanowhiskers under helium irradiation
    Aradi, E.
    Lewis-Fell, J.
    Greaves, G.
    Donnelly, S. E.
    Hinks, J. A.
    [J]. APPLIED SURFACE SCIENCE, 2020, 501
  • [4] Helium implantation into 4H-SiC
    Barbot, Jean Francois
    Leclerc, Stephanie
    David, Marie-Laure
    Oliviero, Erwan
    Montsouka, Romaric
    Pailloux, Frederic
    Eyidi, Dominique
    Denanot, Marie-Francoise
    Beaufort, Marie-France
    Declemy, Alain
    Audurier, Valerie
    Tromas, Christophe
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (08): : 1916 - 1923
  • [5] Radiation damage tolerant nanomaterials
    Beyerlein, I. J.
    Caro, A.
    Demkowicz, M. J.
    Mara, N. A.
    Misra, A.
    Uberuaga, B. P.
    [J]. MATERIALS TODAY, 2013, 16 (11) : 443 - 449
  • [6] Size effects on the mechanical behavior of nanoporous Au
    Biener, Juergen
    Hodge, Andrea M.
    Hayes, Joel R.
    Volkert, Cynthia A.
    Zepeda-Ruiz, Luis A.
    Hamza, Alex V.
    Abraham, Farid F.
    [J]. NANO LETTERS, 2006, 6 (10) : 2379 - 2382
  • [7] Materials to deliver the promise of fusion power - progress and challenges
    Bloom, EE
    Zinkle, SJ
    Wiffen, FW
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2004, 329 : 12 - 19
  • [8] Ab initio study of the migration of intrinsic defects in 3C-SiC -: art. no. 205201
    Bockstedte, M
    Mattausch, A
    Pankratov, O
    [J]. PHYSICAL REVIEW B, 2003, 68 (20)
  • [9] Are Nanoporous Materials Radiation Resistant?
    Bringa, E. M.
    Monk, J. D.
    Caro, A.
    Misra, A.
    Zepeda-Ruiz, L.
    Duchaineau, M.
    Abraham, F.
    Nastasi, M.
    Picraux, S. T.
    Wang, Y. Q.
    Farkas, D.
    [J]. NANO LETTERS, 2012, 12 (07) : 3351 - 3355
  • [10] Camara O., 2018, SHAPE MODIFICATION G, P1, DOI [10.1002/admi.201800276, DOI 10.1002/ADMI.201800276]