Oscillation of higher-order neutral partial functional differential equations

被引:4
作者
Li, WN [1 ]
Debnath, L
机构
[1] Qufu Normal Univ, Dept Math, Shandong 273165, Peoples R China
[2] Binzhou Normal Coll, Dept Math, Shandong 256604, Peoples R China
[3] Univ Texas, Dept Math, Edinburg, TX 78539 USA
关键词
oscillation; higher order; neutral type; partial functional differential equation;
D O I
10.1016/S0893-9659(03)00031-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some sufficient conditions are established for the oscillation of higher-order neutral partial functional differential equations of the form partial derivative(n)/partial derivativet(n) [u(x,t) - p(t)u(x, t - tau)] = a(t)Deltau(x, t) + Sigma(k=1)(s) a(k)(t)Deltau(x, t - rho(k)(t)) -q(x, t)u(x, t) - Sigma(j=1)(m) q(j)(x, t)u(x, t - sigma(j)(t)), (x,t) is an element of Omega x [0, infinity) equivalent to G, where n greater than or equal to 1 is an odd integer, Omega is a bounded domain in R-N with a piecewise smooth boundary partial derivativeOmega, and Delta is the Laplacian in Euclidean N-space R-N. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 11 条
[1]  
Cui BT, 1998, J COMPUT APPL MATH, V95, P153, DOI 10.1016/S0377-0427(98)00069-7
[2]  
DEBNATH L, 2000, INT J APPL MATH, V4, P133
[3]  
Erbe L.H., 1995, Oscillation Theory for Functional Differential Equations
[4]   OSCILLATION OF CERTAIN NEUTRAL DELAY PARABOLIC EQUATIONS [J].
FU, XL ;
ZHUANG, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 191 (03) :473-489
[5]  
JIN M, 1996, APPL MATH MECH, V17, P837
[6]  
Kiguradze I.T., 1993, ASYMPTOTIC PROPERTIE, DOI DOI 10.1007/978-94-011-1808-8
[7]  
Li W. T, 1998, NIHONKAI MATH J, V9, P205
[8]   Oscillation of solutions of neutral partial functional differential equations [J].
Li, WN ;
Cui, BT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :123-146
[9]  
LIU B, 1994, ANN DIFF EQS, V10, P193
[10]   OSCILLATION OF THE SOLUTIONS OF PARABOLIC DIFFERENTIAL-EQUATIONS OF NEUTRAL TYPE [J].
MISHEV, DP ;
BAINOV, DD .
APPLIED MATHEMATICS AND COMPUTATION, 1988, 28 (02) :97-111