Global solutions of quasilinear systems of Klein-Gordon equations in 3D

被引:54
作者
Ionescu, Alexandru D. [1 ]
Pausader, Benoit [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Quasilinear Klein-Gordon systems; global stability and scattering; Euler-Maxwell one-fluid system; SMALL AMPLITUDE SOLUTIONS; SPACE DIMENSIONS; WAVE-EQUATIONS; EXISTENCE; SCATTERING; SPEEDS;
D O I
10.4171/JEMS/489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove small data global existence and scattering for quasilinear systems of Klein- Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.
引用
收藏
页码:2355 / 2431
页数:77
相关论文
共 24 条
[1]  
Bittencourt J. A., 2004, FUNDAMENTALS PLASMA
[2]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[3]  
Delort J.-M., 2002, MEM SOC MATH FRANCE, V91
[4]   Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions [J].
Delort, JM ;
Fang, DY ;
Xue, RY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) :288-323
[5]   Global solutions for the gravity water waves equation in dimension 3 [J].
Germain, P. ;
Masmoudi, N. ;
Shatah, J. .
ANNALS OF MATHEMATICS, 2012, 175 (02) :691-754
[6]  
Germain P, 2014, ANN SCI ECOLE NORM S, V47, P469
[7]   GLOBAL EXISTENCE FOR COUPLED KLEIN-GORDON EQUATIONS WITH DIFFERENT SPEEDS [J].
Germain, Pierre .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (06) :2463-2506
[8]   Global Solutions for 3D Quadratic Schrodinger Equations [J].
Germain, Pierre ;
Masmoudi, Nader ;
Shatah, Jalal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) :414-432
[9]   Smooth irrotational flows in the large to the Euler-Poisson system in R3+1 [J].
Guo, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (02) :249-265
[10]   Global Smooth Ion Dynamics in the Euler-Poisson System [J].
Guo, Yan ;
Pausader, Benoit .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (01) :89-125