Rolling Bearing Fault Diagnosis Based on Time-Frequency Compression Fusion and Residual Time-Frequency Mixed Attention Network

被引:4
|
作者
Sun, Guodong [1 ]
Yang, Xiong [1 ]
Xiong, Chenyun [1 ]
Hu, Ye [1 ]
Liu, Moyun [2 ]
机构
[1] Hubei Univ Technol, Sch Mech Engn, Wuhan 430068, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
基金
中国国家自然科学基金;
关键词
rolling bearing; time-frequency compression fusion; intelligent fault diagnosis; MULTISYNCHROSQUEEZING TRANSFORM; LOCALIZATION; SIGNAL;
D O I
10.3390/app12104831
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The traditional rolling bearing diagnosis algorithms have problems such as insufficient information on time-frequency images and poor feature extraction ability of the diagnosis model. These problems limit the improvement of diagnosis performance. In this article, the input of the time-frequency image and intelligent diagnosis algorithms are optimized. Firstly, the characteristics of two advanced time-frequency analysis algorithms are deeply analyzed, i.e., multisynchrosqueezing transform (MSST) and time-reassigned multisynchrosqueezing transform (TMSST). Then, we propose time-frequency compression fusion (TFCF) and a residual time-frequency mixed attention network (RTFANet). Among them, TFCF superposes and splices two time-frequency images to form dual-channel images, which can fully play the characteristics of multi-channel feature fusion of the convolutional kernel in the convolutional neural network. RTFANet assigns attention weight to the channels, time and frequency of time-frequency images, making the model pay attention to crucial time-frequency information. Meanwhile, the residual connection is introduced in the process of attention weight distribution to reduce the information loss of feature mapping. Experimental results show that the method converges after seven epochs, with a fast convergence rate and a recognition rate of 99.86%. Compared with other methods, the proposed method has better robustness and precision.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Fault diagnosis method of time domain and time-frequency domain based on information fusion
    ZhaoJiang
    WangJiao
    ShangMeng
    MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 635 - 639
  • [22] Rolling Bearing Fault Diagnosis Based on Time-frequency Transform-assisted CNN: A Comparison Study
    Song, Baoye
    Liu, Yiyan
    Lu, Peng
    Bai, Xingzhen
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1273 - 1279
  • [23] Fault diagnosis of rolling bearing' compound faults based on improved time-frequency spectrum analysis method
    Wang H.
    Xiang G.
    Guo Z.
    Gong X.
    Du W.
    1698, Beijing University of Aeronautics and Astronautics (BUAA) (32): : 1698 - 1703
  • [24] A Deep Learning Method for Bearing Fault Diagnosis Based on Time-frequency Image
    Wang, Jianyu
    Mo, Zhenling
    Zhang, Heng
    Miao, Qiang
    IEEE ACCESS, 2019, 7 : 42373 - 42383
  • [25] Time-Frequency Fault Feature Extraction for Rolling Bearing Based on the Tensor Manifold Method
    Wang, Fengtao
    Chen, Shouhai
    Sun, Jian
    Yan, Dawen
    Wang, Lei
    Zhang, Lihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [26] Joint time-frequency analysis and its application in the fault diagnosis of rolling-element bearing
    Fu, QY
    Wang, FL
    Li, MZ
    Peng, YC
    Xia, SB
    CONDITION MONITORING '97, 1997, : 267 - 270
  • [27] Improving bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer
    Wang, Jingyuan
    Zhao, Yuan
    Wang, Wenyan
    Wu, Ziheng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [28] Rolling bearing fault diagnosis method by using feature extraction of convolutional time-frequency image
    Hou, Junjian
    Lu, Xikang
    Zhong, Yudong
    He, Wenbin
    Zhao, Dengfeng
    Zhou, Fang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (09) : 4212 - 4228
  • [29] A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
    Jiang, Zuhua
    Zhang, Kun
    Xiang, Ling
    Yu, Gang
    Xu, Yonggang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [30] A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis
    Cheng, Yao
    Zou, Dong
    Zhang, Weihua
    Wang, Zhiwei
    JOURNAL OF SENSORS, 2019, 2019