Maximum principle for Hadamard fractional differential equations involving fractional Laplace operator

被引:11
作者
Wang, Guotao [1 ,2 ]
Ren, Xueyan [1 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[3] Fac Art & Sci, Dept Math, TR-06530 Balgat, Turkey
[4] Inst Space Sci, Magurele, Romania
关键词
fractional Laplace operator; Hadamard fractional derivative; maximum principle; uniqueness and continuous dependence; ELLIPTIC PROBLEM; OBSTACLE PROBLEM; RADIAL SYMMETRY; DIFFUSION; BOUNDARY; SYSTEMS; REGULARITY; EXISTENCE;
D O I
10.1002/mma.6071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the current study is to investigate IBVP for spatial-time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(-Delta)(beta). A new Hadamard fractional extremum principle is established. Based on the new result, a Hadamard fractional maximum principle is also proposed. Furthermore, the maximum principle is applied to linear and nonlinear Hadamard fractional equations to obtain the uniqueness and continuous dependence of the solution of the IBVP at hand.
引用
收藏
页码:2646 / 2655
页数:10
相关论文
共 44 条
[1]   A survey on fuzzy fractional differential and optimal control nonlocal evolution equations [J].
Agarwal, Ravi P. ;
Baleanu, Dumitru ;
Nieto, Juan J. ;
Torres, Delfim F. M. ;
Zhou, Yong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 :3-29
[2]   A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
APPLIED MATHEMATICS LETTERS, 2016, 52 :9-14
[3]   Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :40-51
[4]  
[Anonymous], 2016, ADV DIFFER EQU-NY
[5]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[6]   Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations [J].
Benchohra, Mouffak ;
Bouriah, Soufyane ;
Nieto, Juan J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) :25-35
[7]  
Bertoin J, 1993, CAMBRIDGE TRACTS MAT
[8]   On fractional Schrodinger systems of Choquard type [J].
Bhattarai, Santosh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3197-3229
[9]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[10]   Sharp energy estimates for nonlinear fractional diffusion equations [J].
Cabre, Xavier ;
Cinti, Eleonora .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :233-269