A 2.4-V asymmetric supercapacitor based on cation-intercalated manganese oxide nanosheets in a low-cost "water-in-salt" electrolyte

被引:31
作者
Bu, Xudong [1 ,2 ]
Zhang, Yurong [2 ]
Su, Lijun [3 ]
Dou, Qingyun [3 ]
Xue, Yun [3 ]
Lu, Xionggang [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Gansu, Peoples R China
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, Lab Clean Energy Chem & Mat, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cation-intercalated manganese oxide; Asymmetric supercapacitor; Aqueous electrolyte; High voltage; ENERGY-STORAGE; VOLTAGE; PERFORMANCE; MNO2; DESIGN;
D O I
10.1007/s11581-019-03141-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main challenge for aqueous asymmetric supercapacitors (ASCs) is the relatively low voltage, which significantly diminishes the energy density of the device. Here, cation-intercalated manganese oxide nanosheets Na0.55Mn2O4 center dot 1.5H(2)O (NaMnO) are synthesized via a facile molten salts method. We find that the electrode potential window for NaMnO nanosheets can be extended to 1.2 V using a low-cost and safe superconcentrated sodium perchlorate (NaClO4) "water-in-salt" (WIS) electrolyte. To construct the asymmetric supercapacitor, the as-prepared NaMnO nanosheets and activated carbon (AC) with a potential window of - 1.2-0 V are used as the positive and negative electrode, respectively. A high-voltage 2.4-V NaMnO//AC aqueous ASC in the concentrated NaClO4 WIS electrolyte is successfully assembled, which exhibited excellent rate performance (the highest power density of 24.0 kW kg(-1)) as well as good cycling stability (94.9% capacitance retention over 20,000 cycles at 5 A g(-1)). This low-cost WIS electrolyte provides new opportunities for developing high-voltage aqueous ASCs with high energy and high power densities.
引用
收藏
页码:6007 / 6015
页数:9
相关论文
共 50 条
[1]   Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J].
Athouel, Laurence ;
Moser, Francois ;
Dugas, Romain ;
Crosnier, Olivier ;
Belanger, Daniel ;
Brousse, Thierry .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (18) :7270-7277
[2]   Solid state synthesis of Li0.33MnO2 as positive electrode material for highly stable 2V aqueous hybrid supercapacitors [J].
Attias, Ran ;
Hana, Ortal ;
Sharon, Daniel ;
Malka, David ;
Hirshberg, Daniel ;
Luski, Shalom ;
Aurbach, Doron .
ELECTROCHIMICA ACTA, 2017, 254 :155-164
[3]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[4]   A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor [J].
Bu, Xudong ;
Su, Lijun ;
Dou, Qingyun ;
Lei, Shulai ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7541-7547
[5]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm.201301851, 10.1002/adfm201301851]
[6]   Energy storage performance of hybrid aqueous supercapacitor based on nano-Li2MnSiO4 and activated carbon [J].
Chaturvedi, Prerna ;
Sil, Anjan ;
Sharma, Yogesh .
IONICS, 2016, 22 (09) :1719-1728
[7]   Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge [J].
Chun, Sang-Eun ;
Evanko, Brian ;
Wang, Xingfeng ;
Vonlanthen, David ;
Ji, Xiulei ;
Stucky, Galen D. ;
Boettcher, Shannon W. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Safe and high-rate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte [J].
Dou, Qingyun ;
Lei, Shulai ;
Wang, Da-Wei ;
Zhang, Qingnuan ;
Xiao, Dewei ;
Guo, Hongwei ;
Wang, Aiping ;
Yang, Hui ;
Li, Yongle ;
Shi, Siqi ;
Yan, Xingbin .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3212-3219
[9]   Review of carbon-based electrode materials for supercapacitor energy storage [J].
Dubey, Richa ;
Guruviah, Velmathi .
IONICS, 2019, 25 (04) :1419-1445
[10]   Novel insight into neutral medium as electrolyte for high-voltage supercapacitors [J].
Fic, Krzysztof ;
Lota, Grzegorz ;
Meller, Mikolaj ;
Frackowiak, Elzbieta .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5842-5850