DECOMPOSITIONS OF STOCHASTIC PROCESSES BASED ON IRREDUCIBLE GROUP REPRESENTATIONS
被引:4
|
作者:
Peccati, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Ouest Nanterre La Def, Equipe ModalX, Nanterre, France
Univ Paris 06, Lab Stat Theor & Appl, Paris, FranceUniv Paris Ouest Nanterre La Def, Equipe ModalX, Nanterre, France
Peccati, G.
[1
,2
]
Pycke, J. -R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Evry, Dept Math, Evry, FranceUniv Paris Ouest Nanterre La Def, Equipe ModalX, Nanterre, France
Pycke, J. -R.
[3
]
机构:
[1] Univ Paris Ouest Nanterre La Def, Equipe ModalX, Nanterre, France
[2] Univ Paris 06, Lab Stat Theor & Appl, Paris, France
Let G be a topological compact group acting on some space Y. We study a decomposition of Y-indexed stochastic processes, based on the orthogonality relations between the characters of the irreducible representations of G. In the particular case of a Gaussian process with a G-invariant law, such a decomposition gives a very general explanation of a classic identity in law-between quadratic functionals of a Brownian bridge-due to Watson [Biometrika, 48 (1961), pp. 109-114]. Relations with Karhunen-Loeve expansions are also discussed, and some further applications and extensions are given-in particular related to Gaussian processes indexed by a torus.
机构:
Univ Sao Paulo, Inst Matemat & Estat, BR-66281053 Sao Paulo, Brazil
Moscow City Pedag Univ, Moscow, RussiaUniv Sao Paulo, Inst Matemat & Estat, BR-66281053 Sao Paulo, Brazil