AutoStepfinder: A fast and automated step detection method for single-molecule analysis

被引:28
作者
Loeff, Luuk [1 ,2 ,3 ]
Kerssemakers, Jacob W. J. [1 ,2 ]
Joo, Chirlmin [1 ,2 ]
Dekker, Cees [1 ,2 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2629 HZ Delft, Netherlands
[2] Delft Univ Technol, Dept Bionanosci, NL-2629 HZ Delft, Netherlands
[3] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 05期
关键词
TIME-SERIES; DYNAMICS; STATES;
D O I
10.1016/j.patter.2021.100256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated, and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step detection for a broad variety of experimental traces. The user-friendly interface and the automated detection of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowledge to generate step fits and informative plots in less than an hour.
引用
收藏
页数:12
相关论文
共 59 条
  • [41] Single-molecule analysis of dynein processivity and stepping behavior
    Reck-Peterson, Samara L.
    Yildiz, Ahmet
    Carter, Andrew P.
    Gennerich, Arne
    Zhang, Nan
    Vale, Ronald D.
    [J]. CELL, 2006, 126 (02) : 335 - 348
  • [42] Restrepo-Pe L., 2018, NAT NANOTECHNOL
  • [43] Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore
    Restrepo-Perez, Laura
    Huang, Gang
    Bohlander, Peggy R.
    Worp, Nathalie
    Eelkema, Rienk
    Maglia, Giovanni
    Joo, Chirlmin
    Dekker, Cees
    [J]. ACS NANO, 2019, 13 (12) : 13668 - 13676
  • [44] Single-Molecule Analysis beyond Dwell Times: Demonstration and Assessment in and out of Equilibrium
    Schmid, Sonja
    Goetz, Markus
    Hugel, Thorsten
    [J]. BIOPHYSICAL JOURNAL, 2016, 111 (07) : 1375 - 1384
  • [45] ESTIMATING DIMENSION OF A MODEL
    SCHWARZ, G
    [J]. ANNALS OF STATISTICS, 1978, 6 (02) : 461 - 464
  • [46] An Introduction to Infinite HMMs for Single-Molecule Data Analysis
    Sgouralis, Ioannis
    Presse, Steve
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (10) : 2021 - 2029
  • [47] Sun B., 2015, CRIT REV BIOCHEM MOL, V9238, P1
  • [48] DIRECT OBSERVATION OF KINESIN STEPPING BY OPTICAL TRAPPING INTERFEROMETRY
    SVOBODA, K
    SCHMIDT, CF
    SCHNAPP, BJ
    BLOCK, SM
    [J]. NATURE, 1993, 365 (6448) : 721 - 727
  • [49] Tavakoli M, 2017, ADV CHEM PHYS, V162, P205
  • [50] DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning
    Thomsen, Johannes
    Sletfjerding, Magnus Berg
    Jensen, Simon Bo
    Stella, Stefano
    Paul, Bijoya
    Malle, Mette Galsgaard
    Montoya, Guillermo
    Petersen, Troels Christian
    Hatzakis, Nikos S.
    [J]. ELIFE, 2020, 9 : 1 - 21