AutoStepfinder: A fast and automated step detection method for single-molecule analysis

被引:28
作者
Loeff, Luuk [1 ,2 ,3 ]
Kerssemakers, Jacob W. J. [1 ,2 ]
Joo, Chirlmin [1 ,2 ]
Dekker, Cees [1 ,2 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2629 HZ Delft, Netherlands
[2] Delft Univ Technol, Dept Bionanosci, NL-2629 HZ Delft, Netherlands
[3] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 05期
关键词
TIME-SERIES; DYNAMICS; STATES;
D O I
10.1016/j.patter.2021.100256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated, and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step detection for a broad variety of experimental traces. The user-friendly interface and the automated detection of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowledge to generate step fits and informative plots in less than an hour.
引用
收藏
页数:12
相关论文
共 59 条
  • [21] Stepwise nucleosome translocation by RSC remodeling complexes
    Harada, Bryan T.
    Hwang, William L.
    Deindl, Sebastian
    Chatterjee, Nilanjana
    Bartholomew, Blaine
    Zhuang, Xiaowei
    [J]. ELIFE, 2016, 5
  • [22] 1/f noise in graphene nanopores
    Heerema, S. J.
    Schneider, G. F.
    Rozemuller, M.
    Vicarelli, L.
    Zandbergen, H. W.
    Dekker, C.
    [J]. NANOTECHNOLOGY, 2015, 26 (07)
  • [23] A Primer on Bayesian Inference for Biophysical Systems
    Hines, Keegan E.
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (09) : 2103 - 2113
  • [24] Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference
    Hines, Keegan E.
    Bankston, John R.
    Aldrich, Richard W.
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (03) : 540 - 556
  • [25] Isojima H, 2016, NAT CHEM BIOL, V12, P290, DOI [10.1038/nchembio.2028, 10.1038/NCHEMBIO.2028]
  • [26] Bringing single-molecule spectroscopy to macromolecular protein complexes
    Joo, Chirlmin
    Fareh, Mohamed
    Kim, V. Narry
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2013, 38 (01) : 30 - 37
  • [27] Juette MF, 2016, NAT METHODS, V13, P341, DOI [10.1038/NMETH.3769, 10.1038/nmeth.3769]
  • [28] The bright future of single-molecule fluorescence imaging
    Juette, Manuel F.
    Terry, Daniel S.
    Wasserman, Michael R.
    Zhou, Zhou
    Altman, Roger B.
    Zheng, Qinsi
    Blanchard, Scott C.
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 20 : 103 - 111
  • [29] An objective, model-independent method for detection of non-uniform steps in noisy signals
    Kalafut, Bennett
    Visscher, Koen
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (10) : 716 - 723
  • [30] Alternate fast and slow stepping of a heterodimeric kinesin molecule
    Kaseda, K
    Higuchi, H
    Hirose, K
    [J]. NATURE CELL BIOLOGY, 2003, 5 (12) : 1079 - 1082