AutoStepfinder: A fast and automated step detection method for single-molecule analysis

被引:28
作者
Loeff, Luuk [1 ,2 ,3 ]
Kerssemakers, Jacob W. J. [1 ,2 ]
Joo, Chirlmin [1 ,2 ]
Dekker, Cees [1 ,2 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2629 HZ Delft, Netherlands
[2] Delft Univ Technol, Dept Bionanosci, NL-2629 HZ Delft, Netherlands
[3] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 05期
关键词
TIME-SERIES; DYNAMICS; STATES;
D O I
10.1016/j.patter.2021.100256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated, and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step detection for a broad variety of experimental traces. The user-friendly interface and the automated detection of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowledge to generate step fits and informative plots in less than an hour.
引用
收藏
页数:12
相关论文
共 59 条
  • [1] Single-molecule fluorescence microscopy of native macromolecular complexes
    Aggarwal, Vasudha
    Ha, Taekjip
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 41 : 225 - 232
  • [2] Akaike H., 1973, 2 INT S INF THEOR TS, P267, DOI [10.1007/978-1-4612-0919-5_38, 10.1007/978-1-4612-1694-0]
  • [3] Stochastic Protein Interactions Monitored by Hundreds of Single-Molecule Plasmonic Biosensors
    Beuwer, Michael A.
    Prins, Menno W. J.
    Zijlstra, Peter
    [J]. NANO LETTERS, 2015, 15 (05) : 3507 - 3511
  • [4] ANALYSIS OF COMPLEX SINGLE-MOLECULE FRET TIME TRAJECTORIES
    Blanco, Mario
    Walter, Nils G.
    [J]. METHODS IN ENZYMOLOGY, VOL 472: SINGLE MOLECULE TOOLS, PT A: FLUORESCENCE BASED APPROACHES, 2010, 472 : 153 - 178
  • [5] Two Distinct DNA Binding Modes Guide Dual Roles of a CRISPR-Cas Protein Complex
    Blosser, Timothy R.
    Loeff, Luuk
    Westra, Edze R.
    Vlot, Marnix
    Kunne, Tim
    Sobota, Malgorzata
    Dekker, Cees
    Brouns, Stan J. J.
    Joo, Chirlmin
    [J]. MOLECULAR CELL, 2015, 58 (01) : 60 - 70
  • [6] Learning Rates and States from Biophysical Time Series: A Bayesian Approach to Model Selection and Single-Molecule FRET Data
    Bronson, Jonathan E.
    Fei, Jingyi
    Hofman, Jake M.
    Gonzalez, Ruben L., Jr.
    Wiggins, Chris H.
    [J]. BIOPHYSICAL JOURNAL, 2009, 97 (12) : 3196 - 3205
  • [7] A comparison of step-detection methods: How well can you do?
    Carter, Brian C.
    Vershinin, Michael
    Gross, Steven P.
    [J]. BIOPHYSICAL JOURNAL, 2008, 94 (01) : 306 - 319
  • [8] Extracting physics of life at the molecular level: A review of single-molecule data analyses
    Colomb, Warren
    Sarkar, Susanta K.
    [J]. PHYSICS OF LIFE REVIEWS, 2015, 13 : 107 - 137
  • [9] Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation
    Dame, Remus T.
    Noom, Maarten C.
    Wuite, Gijs J. L.
    [J]. NATURE, 2006, 444 (7117) : 387 - 390
  • [10] Dekking F. M., 2005, A Modern Introduction to Probability and Statistics: Understanding why and how