Matrix Factorization Enriched with Item Features

被引:0
作者
Zhang, Haiyang [1 ]
Ganchev, Ivan [2 ,3 ,4 ]
Nikolov, Nikola S. [4 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[4] Univ Limerick, CSIS Dept, Limerick, Ireland
来源
2ND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCE AND ENGINEERING (MACISE 2020) | 2020年
关键词
recommendation model; collaborative filtering (CF); matrix factorization (MF); data sparsity; cold start; RECOMMENDER SYSTEMS;
D O I
10.1109/MACISE49704.2020.00020
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper(1) presents a novel matrix factorization (MF) recommendation model, FeatureMF, which extends item latent vectors with item representation learned from metadata. By taking into account item features, the model addresses the coldstart item problem and data-sparsity problem of collaborative filtering (CF). Extensive experiments conducted on a public dataset with two testing views confirm that FeatureMF achieves better prediction accuracy than some of the popular state-of-theart MF-based recommendation models.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 27 条
  • [1] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    Adomavicius, G
    Tuzhilin, A
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) : 734 - 749
  • [2] Bao Y, 2014, AAAI CONF ARTIF INTE, P2
  • [3] Recommender systems survey
    Bobadilla, J.
    Ortega, F.
    Hernando, A.
    Gutierrez, A.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 46 : 109 - 132
  • [4] Fernandez-Tobias I., 2017, THESIS UAM
  • [5] Fernandez-Tobias I, 2014, CEUR WORKSHOP P, P34
  • [6] Alleviating the new user problem in collaborative filtering by exploiting personality information
    Fernandez-Tobias, Ignacio
    Braunhofer, Matthias
    Elahi, Mehdi
    Ricci, Francesco
    Cantador, Ivan
    [J]. USER MODELING AND USER-ADAPTED INTERACTION, 2016, 26 (2-3) : 221 - 255
  • [7] Factorization Models for Context-/Time-Aware Movie Recommendations
    Gantner, Zeno
    Rendle, Steffen
    Schmidt-Thieme, Lars
    [J]. PROCEEDINGS OF THE RECSYS'2010 ACM CHALLENGE ON CONTEXT-AWARE MOVIE RECOMMENDATION (CAMRA2010), 2010, : 14 - 19
  • [8] A Novel Recommendation Model Regularized with User Trust and Item Ratings
    Guo, Guibing
    Zhang, Jie
    Yorke-Smith, Neil
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (07) : 1607 - 1620
  • [9] A comparative analysis of recommender systems based on item aspect opinions extracted from user reviews
    Hernandez-Rubio, Maria
    Cantador, Ivan
    Bellogin, Alejandro
    [J]. USER MODELING AND USER-ADAPTED INTERACTION, 2019, 29 (02) : 381 - 441
  • [10] Evaluating Collaborative Filtering Recommender Algorithms: A Survey
    Jalili, Mahdi
    Ahmadian, Sajad
    Izadi, Maliheh
    Moradi, Parham
    Salehi, Mostafa
    [J]. IEEE ACCESS, 2018, 6 : 74003 - 74024