Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy

被引:359
作者
Duan, Lili [1 ,2 ]
Liu, Xiao [1 ]
Zhang, John Z. H. [1 ,3 ,4 ,5 ]
机构
[1] E China Normal Univ, Coll Chem & Mol Engn, Dept Phys, Shanghai 200062, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Jinan 250014, Peoples R China
[3] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China
[4] NYU, Dept Chem, New York, NY 10003 USA
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
MACROMOLECULAR NMR-SPECTROSCOPY; MOLECULAR-DYNAMICS; SCORING FUNCTIONS; PERTURBATION CALCULATIONS; INTEGRATION; AFFINITIES; SOLVATION; MECHANICS; SYSTEMS;
D O I
10.1021/jacs.6b02682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a: new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from, the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or - T Delta S) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and :is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.
引用
收藏
页码:5722 / 5728
页数:7
相关论文
共 34 条
[1]   Ligand binding affinities from MD simulations [J].
Åqvist, J ;
Luzhkov, VB ;
Brandsdal, BO .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (06) :358-365
[2]   FREE-ENERGY PERTURBATION METHOD FOR CHEMICAL-REACTIONS IN THE CONDENSED PHASE - A DYNAMICAL-APPROACH BASED ON A COMBINED QUANTUM AND MOLECULAR MECHANICS POTENTIAL [J].
BASH, PA ;
FIELD, MJ ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (26) :8092-8094
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   FREE-ENERGY VIA MOLECULAR SIMULATION - APPLICATIONS TO CHEMICAL AND BIOMOLECULAR SYSTEMS [J].
BEVERIDGE, DL ;
DICAPUA, FM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1989, 18 :431-492
[5]   Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination [J].
Bieri, Michael ;
Kwan, Ann H. ;
Mobli, Mehdi ;
King, Glenn F. ;
Mackay, Joel P. ;
Gooley, Paul R. .
FEBS JOURNAL, 2011, 278 (05) :704-715
[6]  
Case D., 2014, AMBER, V14
[7]   Differential geometry based solvation model I: Eulerian formulation [J].
Chen, Zhan ;
Baker, Nathan A. ;
Wei, G. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (22) :8231-8258
[8]   APPLICATION OF RESP CHARGES TO CALCULATE CONFORMATIONAL ENERGIES, HYDROGEN-BOND ENERGIES, AND FREE-ENERGIES OF SOLVATION [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9620-9631
[9]   Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes [J].
Eldridge, MD ;
Murray, CW ;
Auton, TR ;
Paolini, GV ;
Mee, RP .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1997, 11 (05) :425-445
[10]  
Gohlke H, 2002, ANGEW CHEM INT EDIT, V41, P2645