CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER

被引:2
|
作者
Pfeil, Isabella [1 ,2 ]
Reuss, Felix [1 ]
Vreugdenhil, Mariette [1 ,2 ]
Navacchi, Claudio [1 ]
Wagner, Wolfgang [1 ,2 ]
机构
[1] TU Wien, Dept Geodesy & Geoinformat, Vienna, Austria
[2] TU Wien, Ctr Water Resource Syst, Vienna, Austria
关键词
CROP CLASSIFICATION; TIME-SERIES;
D O I
10.1109/IGARSS39084.2020.9323560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The knowledge of the distribution of crop types is of great importance to numerous applications at regional to global scales. Different techniques, including microwave remote sensing methods, have been developed for automatized, accurate crop mapping, however, the discrimination of crops with similar morphology and phenology remains a challenge. In this study, we investigate how to distinguish wheat and barley fields by applying statistical methods and a long-short term memory network to backscatter observed by the C-band SAR instrument onboard the Sentinel-1 satellite.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [21] Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data
    Harfenmeister, Katharina
    Spengler, Daniel
    Weltzien, Cornelia
    REMOTE SENSING, 2019, 11 (13)
  • [22] WETLAND CLASSIFICATION WITH SWIN TRANSFORMER USING SENTINEL-1 AND SENTINEL-2 DATA
    Jamali, Ali
    Mohammadimanesh, Fariba
    Mahdianpari, Masoud
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6213 - 6216
  • [23] WATER STRESS DETECTION OVER IRRIGATED WHEAT CROPS IN SEMI-ARID AREAS USING THE DIURNAL DIFFERENCES OF SENTINEL-1 BACKSCATTER
    Ouaadi, Nadia
    Jarlan, Lionel
    Ezzahar, Jamal
    Khabba, Said
    Le Dantec, Valerie
    Rafi, Zoubair
    Zribi, Mehrez
    Frison, Pierre-Louis
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 306 - 309
  • [24] Cloud Approach to Automated Crop Classification Using Sentinel-1 Imagery
    Shelestov, Andrii
    Lavreniuk, Mykola
    Vasiliev, Vladimir
    Shumilo, Leonid
    Kolotii, Andrii
    Yailymov, Bohdan
    Kussul, Nataliia
    Yailymova, Hanna
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (03) : 572 - 582
  • [25] FUSION OF SENTINEL-1 AND SENTINEL-2 IMAGES FOR CLASSIFICATION OF AGRICULTURAL AREAS USING A NOVEL CLASSIFICATION APPROACH
    Hedayati, Pouya
    Bargiel, Damian
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6643 - 6646
  • [26] A modified first-order vegetation model for soil moisture retrieval in wheat fields using Sentinel-1 data
    Li, Yan
    Zhang, Chengcai
    Heng, Weidong
    Yang, Feng
    Liu, Jisheng
    DESALINATION AND WATER TREATMENT, 2021, 241 : 340 - 349
  • [27] Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields
    Arias, Maria
    Notarnicola, Claudia
    Campo-Besc, Miguel Angel
    Arregui, Luis Miguel
    Alvarez-Mozos, Jesus
    AGRICULTURAL WATER MANAGEMENT, 2023, 287
  • [28] Backscatter Characteristics Analysis for Flood Mapping Using Multi-Temporal Sentinel-1 Images
    Huang, Minmin
    Jin, Shuanggen
    REMOTE SENSING, 2022, 14 (15)
  • [29] Global seasonal Sentinel-1 interferometric coherence and backscatter data set
    Josef Kellndorfer
    Oliver Cartus
    Marco Lavalle
    Christophe Magnard
    Pietro Milillo
    Shadi Oveisgharan
    Batu Osmanoglu
    Paul A. Rosen
    Urs Wegmüller
    Scientific Data, 9
  • [30] Understanding Sentinel-1 backscatter response to sugarcane yield variability and waterlogging
    den Besten, Nadja
    Dunne, Susan Steele
    Mahmud, Ashfak
    Jackson, Daniel
    Aouizerats, Benjamin
    de Jeu, Richard
    Burger, Rogier
    Houborg, Rasmus
    McGlinchey, Mark
    van der Zaag, Pieter
    REMOTE SENSING OF ENVIRONMENT, 2023, 290