Flexible and Conductive Cellulose Composite Paper for Highly Efficient Electromagnetic Interference Shielding

被引:32
|
作者
Zhang, Fudong [1 ]
Ren, Penggang [1 ,2 ]
Guo, Han [1 ]
Zhang, Zengping [3 ]
Guo, Zhengzheng [2 ]
Dai, Zhong [2 ]
Lu, Zhenxia [1 ]
Jin, Yanling [1 ]
Ren, Fang [1 ]
机构
[1] Xian Univ Technol, Fac Printing Packaging Engn & Digital Media Techn, Xian 710048, Shaanxi, Peoples R China
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[3] Changan Univ, Key Lab Special Area Highway Engn, Minist Educ, Xian 710064, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
cellulose paper; electromagnetic interference shielding; graphene nanosheets; silver nanowire; LIGHTWEIGHT; FOAMS; NANOCOMPOSITES; FILM; TRANSPARENT;
D O I
10.1002/aelm.202100496
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developing highly efficient electromagnetic interference (EMI) shielding materials with outstanding mechanical properties are urgently desirable for portable device hardware and flexible electronic devices. Herein, a highly conductive and flexible silver nanowires/graphene nanosheets/cellulose (AgNWs/GNSs/cellulose) composite paper with particular three-layered structures is fabricated via vacuum assisted filtered and coating method. The prepared composites exhibit excellent EMI shielding property due to the unique layered structure. By changing the order of the conductive layers, the overall shielding performance can be further improved. An outstanding EMI shielding effectiveness (SE) of 53.3 dB is achieved with a thickness of only 0.17 mm. The composites show prominent bending resistance, which is proved by 1000 times of repeated bending leading to no obvious changes in structure. Moreover, the prepared composites exhibit excellent mechanical properties. Therefore, it is expected that this work will open up a facile strategy for exploiting materials with excellent EMI shielding properties and mechanical performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications
    Zhu, Meng
    Yan, Xuanxuan
    Xu, Hailong
    Xu, Yongjian
    Kong, Luo
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17234 - 17244
  • [2] Cellulose composite aerogel for highly efficient electromagnetic interference shielding
    Huang, Hua-Dong
    Liu, Chun-Yan
    Zhou, Dong
    Jiang, Xin
    Zhong, Gan-Ji
    Yan, Ding-Xiang
    Li, Zhong-Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) : 4983 - 4991
  • [3] Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding
    Cao, Wentao
    Ma, Chang
    Tan, Shuo
    Ma, Mingguo
    Wan, Pengbo
    Chen, Feng
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [4] Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding
    Chen, Yiming
    Pang, Liang
    Li, Yang
    Luo, Heng
    Duan, Gaigai
    Mei, Changtong
    Xu, Wenhui
    Zhou, Wei
    Liu, Kunming
    Jiang, Shaohua
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 135
  • [5] Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding
    Hu, Dawei
    Huang, Xingyi
    Li, Shengtao
    Jiang, Pingkai
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 188
  • [6] Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding
    Jiao, Chenyang
    Deng, Zhiming
    Min, Peng
    Lai, Jingjing
    Gou, Qingqiang
    Gao, Rong
    Yu, Zhong-Zhen
    Zhang, Hao-Bin
    CARBON, 2022, 198 : 179 - 187
  • [7] Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding
    Ren, Fang
    Guo, Han
    Guo, Zheng-Zheng
    Jin, Yan-Ling
    Duan, Hong-Ji
    Ren, Peng-Gang
    Yan, Ding-Xiang
    POLYMERS, 2019, 11 (09)
  • [8] Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding
    Gao, Jiefeng
    Luo, Junchen
    Wang, Ling
    Huang, Xuewu
    Wang, Hao
    Song, Xin
    Hu, Mingjun
    Tang, Long-Cheng
    Xue, Huaiguo
    CHEMICAL ENGINEERING JOURNAL, 2019, 364 : 493 - 502
  • [9] Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding
    Wentao Cao
    Chang Ma
    Shuo Tan
    Mingguo Ma
    Pengbo Wan
    Feng Chen
    Nano-Micro Letters, 2019, 11 (04) : 276 - 292
  • [10] Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding
    Wentao Cao
    Chang Ma
    Shuo Tan
    Mingguo Ma
    Pengbo Wan
    Feng Chen
    Nano-Micro Letters, 2019, 11