Block-triangular preconditioners for saddle point problems with a penalty term

被引:125
作者
Klawonn, A [1 ]
机构
[1] Univ Munster, Inst Numer & Ind Math, D-48149 Munster, Germany
关键词
saddle point problems; penalty term; block-triangular preconditioners; linear elasticity; almost incompressible materials;
D O I
10.1137/S1064827596303624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Block-triangular preconditioners for a class of saddle point problems with a penalty term are considered. An important example is the mixed formulation of the pure displacement problem in linear elasticity. It is shown that the spectrum of the preconditioned system is contained in a real, positive interval and that the interval bounds can be made independent of the discretization and penalty parameters. This fact is used to construct bounds of the convergence rate of the GMRES method with respect to an energy norm. Numerical results are given for GMRES and BI-CGSTAB.
引用
收藏
页码:172 / 184
页数:13
相关论文
共 35 条
  • [1] [Anonymous], 1993, PITMAN RES NOTES MAT
  • [2] LOCKING EFFECTS IN THE FINITE-ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS
    BABUSKA, I
    SURI, M
    [J]. NUMERISCHE MATHEMATIK, 1992, 62 (04) : 439 - 463
  • [3] BALAY S, 1996, PETSC WORLD WIDE WEB
  • [4] Balay S., 1995, ANL9511
  • [5] A MULTIGRID METHOD FOR A PARAMETER DEPENDENT PROBLEM IN SOLID MECHANICS
    BRAESS, D
    BLOMER, C
    [J]. NUMERISCHE MATHEMATIK, 1990, 57 (08) : 747 - 761
  • [6] BRAESS D, 1992, FINITE ELEMENT
  • [7] Analysis of the inexact Uzawa algorithm for saddle point problems
    Bramble, JH
    Pasciak, JE
    Vassilev, AT
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) : 1072 - 1092
  • [8] BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
  • [9] BRENNER S., 1996, RAIRO-MATH MODEL NUM, V30, P265
  • [10] Brezzi F., 2012, MIXED HYBRID FINITE, V15